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Kurzfassung

Industriegebäude haben oft einen kurzen Lebenszyklus aufgrund von inflexiblen Trag-
werken. Die sich ständig ändernden Produktionsprozesse führen zum Abriss von Indus-
triegebäuden, da diese sich nicht an ihre neuen Anforderungen adaptieren lassen. Die
vorliegende Arbeit ist Teil des BIMFlexi Projektes, dessen Ziel es ist eine auf Building
Information Modeling (BIM) basierende Plattform zu entwickeln, die Produktionsplanung
integriert, und somit alle Interessensvertreter_innen eines Gebäudeplanungsprozesses
hilft flexible and nachhaltige Industriegebäude zu entwerfen.

In der vorliegenden Arbeit wird ein multikriterielles Optimierungstool präsentiert, um
Entscheidungsträger_innen in der Designphase zu unterstützen. Das Tool baut auf einem
parametrischen Framework für Tragwerksgenerierung auf. Durch das Präsentieren von
mehreren Tragwerkskonstruktionen mit verschiedenen Eigenschaften können Entschei-
dungsträger_innen eine informierte Entscheidung über unterschiedliche Kompromisse
zwischen Kosten, Umweltauswirkungen und Flexibilität eines Tragwerkes treffen. Das
Tool wurde auf zwei unterschiedliche Arten untersucht. Eine Benutzerstudie wurde durch-
geführt, um die Benutzerfreundlichkeit und die Zweckmäßigkeit zu untersuchen. Die
zweite Studie untersucht drei verschiedene evolutionäre Algorithmen, um den passenden
Algorithmus für die Optimierung von Industriegebäuden zu finden.
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Abstract

Industrial buildings often have a very short lifespan due to inflexible design of load
bearing structures. Frequently changing production processes often lead to demolition of
industrial buildings because these buildings cannot be adapted to the new requirements.
This work is part of the BIMFlexi project, whose goal is to develop an integrated Building
Information Modeling (BIM) based platform to connect all stakeholders in a building
planning process to design flexible and sustainable industrial buildings.

In this work a many-objective optimization tool is presented to support decision makers
during the design phase. The tool is built on top of a parametric framework for load
bearing structure generation. By presenting multiple optimized load bearing structures
with different properties decision makers can make informed decisions about trade-offs
between cost, environmental impacts and flexibility of a load bearing structure. The tool
has been studied in two different ways. A user study was conducted to verify its usability
and usefulness. A second study compared three different evolutionary algorithms to find
the best fitting algorithm for industrial building optimization.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

Due to fast changing production processes, current industrial buildings often lack the
flexibility to adapt to their new usage. This often results in demolition and new construc-
tion of the building which does not only lead to high costs but also increased resource
consumption whose production has a high impact on the environment. Therefore, flexi-
bility and expandability of buildings with respect to production systems are main goals
in industrial building design.
In order to maximize flexibility it is necessary to investigate possible effects of certain
design decisions at an early stage of the design process as they have a great impact on
the workflow of the remaining process and the life cycle of a building. This, however, is
challenging in multiple ways. Industrial building design is a lengthy and complex design
process that requires specialists from a variety of fields, including architects, structural
designers, energy- and production planners as well as building owners. Furthermore,
each stakeholder pursues different and sometimes conflicting objectives when designing
or making decisions. Desired changes from one stakeholder may cause improvement in
one objective but deteriorate another objective at the same time. Yet the effects of such
changes are often only detected at a later stage where redesigning may be too late or too
expensive.
Another problem arises when looking at the sheer number of possibilities on how an
industrial building can be designed. Due to the complexity, designing takes a lot of
time and it is not possible to design hundreds of options by hand. This limits the
involved people to focus on one or two solutions instead of exploring and examining the
possible effects of multiple different designs. While there are tools that work well for
each individual part of the design process there is currently no holistic solution available
to support the whole process to find the most sustainable and flexible design option.
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1. Introduction

1.2 BIMFlexi Project

This thesis is part of the BIMFlexi Project [BIM20], which is funded by the Austrian
Research Promotion Agency. The goal of BIMFlexi is to develop an integrated Building
Information Modeling (BIM) -based platform to connect all stakeholders of the industrial
building planning process. It links discipline specific tools and provides data over the entire
life cycle of an industrial building. Therefore, the platform enables planning, analyzing
and optimizing of flexible buildings in one tool. BIMFlexi supports multidisciplinary
teams to understand different goals and analyze structural designs and their effects to
make decisions that maximize the overall value.
For this reason a parametric model was designed [RKK21]. For a given input set the
framework automatically calculates different flexibility values, environmental values
and life cycle costs. This enables the automatic generation of many different structure
variations and therefore the optimization of structures for a given scenario. Using this
platform stakeholders are able to shift their focus from designing to analyzing and
evaluating structures and make holistically informed decisions.

1.3 Aim of this Work

In order to enable stakeholders to make informed decisions on trade-offs between different
objectives one major part of the BIMFlexi project is the integration of a many-objective
optimization. Based on the aforementioned information, this master thesis tries to answer
the following questions:

1. Does an optimization tool provide a good overview of different designs and supports
users in their decision making?
The optimization tool should provide an easier and a more efficient way to explore
the different designs. Furthermore, the results should be presented in such a way
that the decision maker can compare the solutions against each other and is able
to select a subset of the Pareto optimal solutions. Because of the huge search space
and conflicting objectives this work focuses on the implementation of Pareto-based
many-objective evolutionary algorithms (MaOEA).

2. Is there an algorithm that works better than other algorithms?
The "No Free Lunch" theorem tells us that all optimization algorithms perform
equally well when averaged over all possible problems [WM05]. Every MaOEA
performs differently on different problems and there is no single algorithm that will
always perform better. This holds true for many-objective optimization problems
(MaOP) in real-world applications as well. Therefore, another focus of this thesis
is to find an appropriate algorithm for our problem. We will investigate the
performance of multiple algorithms in terms of convergence and diversity.
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1.4. Methodology and Contribution

1.4 Methodology and Contribution
The methodological approach consists of four steps.

• First, an extensive literature research gives a deep understanding of the challenges
in many-objective optimizations. In this step we investigate the optimization
possibilities within Grasshopper3D as well.

• The second step consists of implementing the optimization tool into the BIMFlexi
framework, including visualizing the data. We chose three multi-objective evolu-
tionary algorithms (MOEA) to test: the Strength Pareto Evolutionary Algorithm
2 (SPEA2) [ZLT01], SPEA2 with the Shiftbased Density Estimator (SDE) [LYL13]
and the Constrained Two-Archive Evolutionary Algorithm (CTAEA) [LCFY18].

• A user study was conducted to verify the feasibility and quality of solutions found
by the optimization algorithm as well as the usefulness of an optimization tool in
general.

• Finally, we compared the optimization algorithms on three different test cases to
analyze the performance in terms of quality on each algorithm.

The contribution of this thesis is a new optimization tool to complement the BIMFlexi
framework. The current framework already provides a substantial improvement in the
area of design exploration. With the addition of the optimization tool even more variants
can be explored and compared without the time consuming, manual generation of different
designs. Additionally, a user study and a comparison of algorithms is done to provide
information for future improvements of the current framework.

1.5 Structure of the Thesis
The remainder of this thesis is structured as follows. First, in Chapter 2 a literature
review is given. We look at related works and the current developments in three areas,
industrial building design, multi-objective optimization and optimization in Grasshopper.
This chapter also gives an explanation on what Pareto optimality is and the difference
between multi- and many-objective optimization.
The optimization tool is presented in Chapter 3. This includes the implemented algorithms,
visualization of data, the integration of the tool into the existing script of the parametric
model and the workflow of the whole framework including the optimization.
To validate the tool a user study was conducted with master students from architecture
and civil engineering from TU Wien. Additionally, an algorithm comparison was done
with three different test cases. The three test cases also cover three different problem
sizes, i.e. sizes of decision space. Results of the user study and the algorithm comparison
are presented in Chapter 4. The results are then discussed in Chapter 5.
Finally, Chapter 6 concludes the thesis. Findings are summarized and suggestions for
future steps are given.
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CHAPTER 2
Literature Review

2.1 Sustainability and Flexibility in Industrial Building
Design

One major goal in industrial building design is to improve the sustainability of the built
environment. Especially industrial buildings consume large amounts of materials and
energy. In 2018, the transformation of raw materials into construction materials alone
accounts for roughly 11% of global emissions [Age19]. Many researchers point out that
decisions made at an early design stage have a greater impact on the whole project,
while decisions made at a later stage are much costlier and more difficult to implement.
Kovacic et.al. [KWG16] for example developed a decision support tool for different façade
systems of industrial building system. The results revealed that the initial costs diverge
up to 27% while after 35 years the difference in life cycle costs is only 6%. The timber
façade had the highest initial costs but produced the least emissions (80% less) and would
therefore have been the best choice for the time period of 35 years. The study shows
the decision impacts on the whole life cycle and suggests that decision supporting tools
should be implemented in the early design stages where they can guide designers towards
optimal solutions.

Optimization has been a popular tool to achieve improvements in various areas of building
design, including sustainability. A recent meta study shows that it has been intensively
applied to enhancing building’s energy efficiency, improving thermal and visual comfort,
minimizing life-cycle costs, and emission [MN22]. Optimization has been frequently used
for design space exploration as well to present designers different alternative designs
[SAG05] and guiding them towards more optimal solutions. Further research shows that
Rhino and Grasshopper are the software packages that currently dominate the field
[TT17] and numerous studies use optimization tools like Octopus, Galapagos and Colibri
[MN22].

5



2. Literature Review

Due to frequently changing production processes, industrial buildings often have a short
life span, resulting in early demolition and therefore high environmental impact. To
counteract this, industrial buildings must be able to adapt, i.e. be flexible, to the changing
requirements. Geraedts [Ger16] investigated different flexibility indicators and developed
a catalog for flexibility assessment of existing buildings. Cavalliere et. al. [CDFL19]
suggested assessment metrics for flexibility and showed that the flexibility of buildings
can be automatically calculated during the design process phase. As the mentioned
research does not focus on industrial buildings, they are only partially applicable in
industrial building design.
In industrial buildings the load-bearing structure is one major limiting factor for flexibility.
Therefore, to increase flexibility the focus should be on optimizing the load-bearing
structure. Several researchers suggested and also have optimized the structure in different
areas of building design but consider other objectives than flexibility. Boonstra et. al.
presented [BvdBHE20] two methods to generate structural system layouts. The first
method uses design rules to develop a structural system layout. The second method uses
an evolutionary algorithm, multi-objective mixed-integer evolution strategy [vdBYBE19],
to assign structural components to a buildings spatial design’s geometry. The proposed
methods have been demonstrated on two objectives, minimal strain energy and minimal
structural volume. Gan et. al. [GWT+19] developed a hybrid algorithm to find cost
optimal high-rise reinforced concrete buildings with reduced carbon footprint. In the
optimization they consider both, the structural topology and individual structural element
size. The topology is optimized using a genetic algorithm while a gradient-based direct
search technique is used to find the optimal element size.
Multiple papers have done research on multi-objective optimization over cross disciplines
as well, as optimizing only one domain may deteriorate performance in other disciplines
and vice versa. Yi et. al.[YTPB21] optimized a building for skylight roof system
while considering cost, structural and energy performance. In their case study on a
sawtooth roof they used Rhino with Grasshopper. Grasshopper was used to control
geometry and to calculate the objectives. Afterwards the objectives were coupled to
MATLAB [Mat] for optimization using the nondominated sorting genetic algorithm
II (NSGA-II) [DPAM02]. Hamidavi et. al. [HAPB18] propose a structural design
optimization framework using a genetic algorithm to explore early structural design
alternatives. They state that such frameworks would improve the collaboration between
the architectural stage and the structural stage. Brown et. al. [BDOOM16] suggest to
integrate architectural and structural objectives into one multi-objective design tool in
the early design process to better guide the designers towards high performing solutions.
The authors implemented a suite of tools within Rhino, including the NSGA-II algorithm
for multi-objective optimization and tested it on a cantilevered stadium roof. Using
four parameters the structures were optimized for optimal structural efficiency, rain
protection, sound dispersion and portion of visible sky. Similarly, Pan et. al. [PTL+19]
used multi-objective optimization to balance architectural and structural performance
with the goal to integrate multi-functional indoor sports arenas with long-span structure
in the early design stage. In a case study of a cantilevered stadium roof multiple structural
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2.2. Multi- and Many-objective Optimization

and spectator objectives have been optimized. Rhino and Grasshopper were used for
the parametric design while the optimization was carried out in MATLAB using the
NSGA-II algorithm.

In industrial building design the integration of flexibility and production planning is
still rare. Yet changing production requirements is one driving factor for the need of
flexibility. Furthermore, there is currently no holistic approach to combine life-cycle cost,
life cycle environmental impact, production planning and flexibility into one decision
tool for the early design stage. Adding multi-objective optimization would further enable
designers to investigate different design alternatives, listing trade-offs between conflicting
objectives. Such tool would show stakeholders the impacts of their decision for the whole
life cycle of the building and therefore empower them to make sustainable decisions.

2.2 Multi- and Many-objective Optimization
2.2.1 Pareto Dominance, Optimality and Front
A multi-objective optimization problem (MOP) is a problem that involves two or more
potentially conflicting objectives that need to be optimized simultaneously. A many-
objective optimization problem (MaOP) is a MOP that deals with more than three
objectives. Formally the problem can be modeled as follows

min
s.t. x⃗∈X

(f(x⃗) = (f1(x⃗), f2(x⃗), . . . , fm(x⃗))) (2.1)

Without loss of generality all objective functions are to be minimized. Objectives that are
to be maximized can be multiplied by -1 to convert them to an equivalent minimization
problem. For final visualization the sign may be inverted again. f(x⃗) is an objective
function vector that consists of m objective functions. X is the decision space and
x⃗ = (x1, x2, . . . , xD) ∈ X is the decision vector.
Since the objectives are conflicting, optimizing one objective will often worsen other
objectives. Therefore, there is usually not only one solution that can be considered
optimal but rather a set of trade-off solutions. This set is called Pareto optimal solutions,
termed Pareto front or Pareto set. The number of solutions that form the Pareto front
can be infinite. All Pareto optimal solutions can be considered equally good if there is
no subjective preference, i.e. from the decision maker.
A solution is Pareto optimal or nondominated when it is not possible to improve one
objective without worsening another one. Whether a solution dominates another solution
can be defined by the dominance relation as follows: Let x⃗1, x⃗2 ∈ X then x⃗1 dominates
x⃗2 (x⃗1 < x⃗2 in case of minimization) if and only if

• fi(x⃗1) ≤ fi(x⃗2) for all i ∈ {1, 2, ..., m} and

• fj(x⃗1) < fj(x⃗2) for at least one index j ∈ {1, 2, ..., m}.

7



2. Literature Review

(a) (b)

Figure 2.1: Dominance relation and points of interests. (a) The Pareto front consists of
the solutions A, B and C (marked in blue). D is dominated by A. E is dominated by A,
B, C and D. (b) The Pareto front is continuous (marked with blue). The ideal, nadir
and worst points are shown in relation to the Pareto front.

A solution x⃗∗ is called Pareto optimal only if there is no x⃗ ∈ X such that x⃗ < x⃗∗. An
example of the dominance relations is given in Figure 2.1a. A, B and C are not dominated
by any other solutions. Therefore, they form the Pareto front. E is dominated by all
other solutions, while D is only dominated by A.

Related to the Pareto front there are further points, the ideal, nadir and worst point,
that are of interest as they are often used for optimization or evaluation of the Pareto
front. An example of all three points is given in Figure 2.1b
The ideal point z∗, sometimes called utopia point, is constructed by taking the minimum
value of each objective. Formally, it is defined as z∗ = (z∗

1 , z∗
2 , ..., z∗

m) where z∗
j =

minx⃗∈Xfj(x⃗).
The worst point zw is the opposite of the ideal point. It is the composite of all worst
objective values. It is therefore defined as zw = (zw

1 , ..., zw
m) where zw

j = maxx⃗∈Xfj(x⃗).
The nadir point znad is similar to the worst point, but takes only the solutions on the
Pareto front into consideration.

2.2.2 Multi-Objective Evolutionary Algorithms (MOEA)

When the search space is too large to practically examine it completely it becomes
necessary to use metaheuristic algorithms. Evolutionary algorithms (EA) are population-
based metaheuristics inspired by biological evolution. Using natural evolution as an
analogy, each possible solution is called an individual and a set of individuals is called a
population. Any individual consists of multiple inputs, called genes. All genes together

8



2.2. Multi- and Many-objective Optimization

is named the genotype. The visible solution output, e.g. model, path, text, etc. of
an individual is called the phenotype. EAs start with a set of initial solutions, usually
randomly generated, that are then further optimized. The optimization process can be
summarized into the following steps:

1. The current population is evaluated in the objective space. Each individual is
assigned a scalar value, the fitness. The fitness contains information about many
things, like the objective values, density, feasibility or dominance. It is used to
make two solutions comparable.

2. A set of individuals is randomly sampled according to the fitness values for producing
new individuals.

3. A recombination operator is applied to multiple individuals that were selected for
reproduction, called parents. The recombination operator recombines different
parts from the parents to produce new individuals, called offspring or children.

4. To avoid early convergence a mutation operator is applied with a certain probability
to the newly generated individuals. The mutation operator changes small parts of
the individual.

5. Finally, a new population, the next generation, is formed by selecting the best
individuals from either the offspring set or the latest population. This way of
selecting the new generation is also known as elitism.

One iteration of all the steps is called a generation. These steps are repeated until some
exit conditions are met (e.g. time limit, maximum number of generations). The goal of an
EA is to find or approximate the optimal solution. As we usually do not know the Pareto
optimal sets for real world problems, we will only deal with the approximation of Pareto
sets. In case of MOPs a good approximation cannot mathematically be exactly described
as it is in the case of single objective problems. For a MOEA, however, there are two main
goals that are used to guide the search for the Pareto set. The first one is to guide the
search towards the Pareto front and the second one is to keep a diverse set of solutions.
Keeping these two criteria in mind there are many different ways to approximate the
Pareto front using MOEAs. In general, there are Pareto-based and non-Pareto-based
approaches. Pareto-based approaches use Pareto dominance to calculate the fitness of an
individual. Non-Pareto-based approaches use other metrics instead of Pareto dominance,
like the hypervolume (volume of a n-dimensional body), to approximate the Pareto front.
In Pareto-based approaches the dominance relation can be incorporated into an individ-
ual’s fitness in different ways [ZLB04]. Some algorithms use the dominance count, i.e. the
number of individuals one individual dominates, other use the dominance rank, i.e. the
number of individuals one individual is dominated by. Another technique is to separate
the population into multiple fronts of domination, and make use of the dominance depth
to select individuals for the next generation.

9



2. Literature Review

Two well known representatives of this category are NSGA-II [DPAM02] and SPEA2
[ZLT01]. Since SPEA2 and parts of NSGA-II is implemented within our optimization
tool, we will go through those two algorithms in more detail.

SPEA2 [ZLT01] is an elitist evolutionary algorithm. It keeps a separate memory, called
archive, to store nondominated solutions during the whole search process in addition to
the usual population. The fitness is calculated by determining the strength value S(i),
i.e. dominance rank, of each individual i in the population and archive, first. Based on
the strength value the raw fitness R(i) of an individual is defined as the sum of strength
values from each individual j that dominates i. nondominated solutions will have a raw
fitness of zero. As one can see, SPEA2 incorporates both dominance rank and dominance
count into the fitness calculation. To keep a good diversity the algorithm further includes
a density estimator. If there are more nondominated individuals than the archive can
hold the algorithm will remove nondominated individuals from a more crowded region.
In the original paper an adaptation of the k-nearest neighbor method was used as the
density estimator. However, it can be exchanged with other density estimation techniques
like SDE [LYL13], which we will discuss in the next subsection.

NSGA-II is an elitist evolutionary algorithm as well. Unlike SPEA2 it does not keep a
separate archive for nondominated individuals. An important part of NSGA-II is the
fast nondominated sort algorithm which divides the population into multiple fronts of
dominance, i.e. dominance depth. This algorithm is also seen in other MOEAs, e.g.
TAEA [LLTY14]. The first front is the current Pareto front, i.e. it contains all individuals
that are nondominated. The second front contains individuals that are nondominated
when removing all individuals from the first front, and so on. An example is given in
Figure 2.2. This information is used to select individuals for the next generation. The
pool of individuals for the next generation is filled as follows: Starting from the first front,
each front is added into the pool until the next front i cannot be added completely. Then,
NSGA-II uses a crowding function, similar to SPEA2, to determine which individuals in
front i should survive into the next generation.

These Pareto-based algorithms have shown that they work very well when dealing with
two or three objectives. Unless the objectives are highly correlated [IAON11], their
performance drops drastically when the number of objectives increases.

2.2.3 Many-Objective Evolutionary Algorithms (MaOEA)
As the number of objectives rises, the problem becomes increasingly harder to solve.
In literature MOPs with more than three objectives are referred to as many-objective
optimization problems (MaOP) to highlight their complexity. With the increasing number
of objectives both diversity and convergence within the solutions become challenging. An
increase of objectives means an exponential increase of solutions needed to reasonably
represent the Pareto front [IS19]. To keep a good diversity within the solutions, a large
number of individuals need to be generated. This is computationally very expensive.
Furthermore, because of the huge Pareto front it is very likely that a generated individual
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Figure 2.2: nondominated sorting.

is not dominated by any other solutions. The resulting problem is that there is not
enough selection pressure towards the actual Pareto front and therefore convergence
performs poorly. As conventional Pareto-based approaches fail to provide satisfactory
results, new and improved algorithms have been developed that specifically target these
problems.
One way to deal with MaOP is to decompose the complex problem into multiple simpler
ones. This method is a non-pareto-based approach. Multiple objectives can be aggregated
into a single one where each objective is multiplied by a weight. By applying a set of
weights a MaOP can be decomposed into multiple sub-problems that can be optimized
simultaneously. MOEA/D [ZL07] and MSOPS-II [Hug07] are representatives of this
method. Other methods use reference vector-guided approaches to partition the objective
space into subspaces like RVEA [CJOS16] or NSGA-III [DJ13] for example.
Another non-Pareto-based approach is to use different performance indicators as a guide
in the search process as suggested in [ZK04], i.e. IBEA. A list of indicators for multi-
objective optimization (MOO) have been summarized by Audet et. al. [ABC+20]. One
indicator that measures both convergence and distribution is the hypervolume value.
The hypervolume has been used in SMS-EMOA [BNE07] for example. Because of its
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Figure 2.3: SDE for four different situations of an individual A in a minimization problem.
(a) A population with good convergence and diversity. After applying the shift operator
there is still a good convergence and diversity. (b-d) The shift operator puts A into
a crowded region when the population has a poor convergence and/or poor diversity.
[LYL13]

computational complexity HypE [BZ11] uses Monte Carlo simulation to approximate the
hypervolume.
Other approaches combine the advantages of various algorithms to balance conver-
gence and diversity. MOEA/DD [LDZK14a] for example combines dominance and
decomposition-based approaches. Two_Arch2 [LLTY14] applies two archives each focus-
ing on convergence and diversity separately.
Since the traditional Pareto dominance is insufficient for an MaOP, many researchers have
suggested using a modified version of it. Hence, ϵ-dominance [LTDZ02], L-optimality
[ZCLK08], fuzzy dominance [WJ07], θ-dominance [YXWY15] and many others were
introduced. Further algorithms have been developed that modify the secondary criterion
related to diversity only to achieve good balance between convergence and diversity.
The main idea is that diversity maintenance becomes even more important when the
population is mostly saturated with nondominated solutions, which is usually the case
in a MaOP. When the population is filled with nondominated solutions the diversity
maintenance mechanism is the only mechanism that is able to further push the population
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towards the Pareto front. Therefore, at this stage a density estimator needs to take not
only diversity into account but convergence as well. The shift-based density estimation
(SDE) [LYL13] is an example for that. SDE can be used in any existing algorithm that
incorporates some kind of density estimation, e.g. SPEA2 or NSGA-II. To estimate the
density of an individual i, SDE shifts the position of other individuals in the population
based on the comparison of objectives between these individuals and i. Using this method
individuals with poor convergence and/or poor diversity will be automatically shifted
into a more crowded region, while individuals with good convergence and diversity will
stay in a less crowded region (see Figure 2.3).

2.2.4 Constrained MOP and MaOP
In practice optimization problems are often constrained. Liu et. al. [LW19] differentiate
between constraints in the decision space and objective space. Objective space constraints
are described through objectives while decision space constraints can be described through
the decision variables. In the case of our load-bearing structure the size of the structure
is constrained by the property size. This would be a decision space constraint. On the
other hand structural stability is an objective constraint. Formally, constraints can be
defined by equality and inequality equations.

minimize f(x⃗) = (f1(x⃗), f2(x⃗), . . . , fm(x⃗))
subject to gj(x⃗) ≤ 0, j = 1, 2, ..., q

hj(x⃗) = 0, j = q + 1, ..., l (2.2)

gj(x) and hj(x) are the jth inequality and equality constraints, respectively. The degree
of constraint violation (CV) over all constraints can be expressed as

CV (x⃗) =
l�

i=1
CVi(x⃗) (2.3)

and CVi(x⃗) is the degree of constraint violation on the ith constraint.

CVi(x⃗) =
�

max(0, gi(x⃗), if i ≤ q

max(0, |hi(x⃗)| otherwise
, i = 1, ..., l. (2.4)

x is feasible when CV (x) = 0. Now, additionally to diversity and convergence an
algorithm has to be able to balance the feasibility aspect as well. This raises another
challenge for MaOP. In literature the handling of constraints can be divided into multiple
categories [LCFY18].

In the first category feasibility has the highest priority. The search process is mainly
driven by the feasibility information, i.e. feasible solutions are always ranked better than
infeasible ones and therefore will have a higher priority to survive. The easiest way to
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implement this kind of priority setting is to simply discard all infeasible solutions. Deb et.
al [DPAM02] proposed a constrained dominance relation for constrained multi-objective
optimization problems (CMOP). A solution x1 constrained-dominates x2 if

1. x1 is feasible and x2 is not feasible

2. x1 and x2 are feasible and x1 dominates x2

3. x1 and x2 are infeasible and CV (x1) < CV (x2)

By simply replacing the Pareto dominance relation with the constrained dominance
relation, a number of MaOEA and MOEA can be adjusted to tackle CMOPs.

Another set of constraint handling methods try to balance the trade-off between conver-
gence and feasibility. Infeasible solutions will not automatically have a lower priority to
survive but are rather evolved towards feasibility. Woldesenbet et. al [WYT09] combine
objective function value and the sum of constraint violation to decide between feasible and
infeasible solutions. In [NGY+17] each solution is assigned a constrained nondominated
rank based on its constraint violation degree and Pareto rank.

Instead of evolving infeasible solutions into feasibility over time, they can also be repaired
into feasibility e.g. by using local search [HSOK07] or other metaheuristic approximation
methods like simulated annealing [SRS10].

The mentioned strategies for handling constraints mainly concentrate on feasibility.
However, overemphasizing feasibility may lead to early convergence. The objective space
can be complex and might have disjoint feasible regions. When removing infeasible
solutions too early disjoint regions closer to the Pareto front may never be explored. Li
et. al. [LCFY18] therefore suggest that all three criteria, diversity, convergence and
feasibility should be equally important and should be balanced simultaneously during
the search process.

In recent years algorithms have been suggested that keep feasible and infeasible solutions
separated. A set of infeasible solutions are maintained to keep a balance between
feasibility, diversity and convergence. Yi et. al. [YYHW20] propose to solve a MaOP in
two steps. In the first step constraints are ignored and the main goal is to optimize the
objectives only. nondominated feasible solutions are stored at this stage. In the second
step the nondominated feasible solutions are further evolved and more emphasis is given
towards feasibility. This framework works with any existing MaOEA.
CTAEA [LCFY18], which we use as one of our algorithms, has two archives, called the
convergence-oriented archive (CA) and diversity-oriented archive (DA), in addition to
the normal population. The first archive, CA, keeps a nondominated, feasible and diverse
set of solutions. If there are more nondominated and feasible solutions than the archive
can hold, then the fast nondominated sorting approach with a density estimator using
reference vectors, is applied to take the best individuals. At the end, CA will hold the
feasible Pareto front. The goal of the second archive, DA, is to explore the search space
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regardless of feasibility to prevent getting the algorithm stuck at a local optima. DA
holds the unconstrained Pareto front. One important step in CTAEA is the selection,
which will balance convergence, diversity and feasibility. During the selection process
both archives are combined into one set Hm = CA ∪ DA. The selection of the first parent
is dependent on the proportion of nondominated solutions of CA and DA in Hm. If CA
has a higher proportion of nondominated solutions in Hm, it means that CA has a better
convergence than DA. Therefore, the first parent is chosen from CA. Otherwise, the
first parent will be chosen from DA. The second parent is dependent on the proportion
of nondominated individuals in CA. The more nondominated solutions the higher the
possibility the second parent comes from CA.

As one can see there are many different MaOEAs including different ways of handling
constraints. In the next section we investigate the optimization possibilities within
Grasshopper3D.

2.3 Optimization in Grasshopper3D
Rhinoceros3D [Rhi] is a 3D computer graphics and computer aided design (CAD) software.
It is a modelling environment often used by architects, civil engineers and industrial
designers for rapid prototyping. Rhino itself is a non-parametric modeller, but includes
the parametric modelling and visual programming tool Grasshopper3D [Gra] since Rhino
6. Before that Grasshopper3D was available as plugin. It enables people with basically no
programming knowledge in the sense of writing code, to develop their own functionalities
and to generate complex procedural geometry.

A Grasshopper script consists of multiple functional components arranged on a canvas.
The component’s complexity range from simple mathematical operations (e.g. add,
subtract, etc.) to complex structural analysis like in Karamba3D. Components are
connected to each other via wires that represent data flow (see Figure 2.4). Data flow
within Grasshopper can be represented as a directed acyclic graph (DAG), which comes
with some restrictions. Simple loops are not possible and components are processed
sequentially. Furthermore, in Grasshopper any action in one component will trigger an
update downstream regardless of whether there was a change or not. On the other hand
Grasshopper makes extensive use of lists and trees, which makes data flow much easier.

2.3.1 Integration of Optimization Plugins in Grasshopper
Grasshopper comes with an integrated optimization tool called Galapagos which is the
base of most existing optimization tools for Grasshopper. It was created by David
Rutton, the author of Grasshopper. It supports a Genetic algorithm (GA) and Simulated
Annealing (SA) for single objective optimization. Because of the DAG representation,
Galapagos must be a component outside of the DAG otherwise it would trigger an endless
loop. Therefore, its connection works differently. Galapagos is connected using only
outgoing wires (see Figure 2.5). On the one side all genes are connected and on the other
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Figure 2.4: Simple example of a Grasshopper script (right) that calculates the surface-
area-to-volume-ratio. Data flow is from left to right. Rhino (left) visualizes the geometry
that is generated through the script.

side one objective value is connected. Genes are represented by sliders. Each combination
of slider value is a different solution to the problem. Galapagos does not offer the ability
to connect constraints. Any constraints need to be reformulated into an objective and
incorporated into the fitness function.

Upon double clicking the component, an UI window opens up where the actual op-
timization can be started. The UI offers different settings for the optimization and
lets the user choose between the GA and SA solvers. During the optimization process
Galapagos changes the slider values, issues a recalculation in Grasshopper and retrieves
the connected objective value. Changes during optimization are visualized in the UI
window. These steps are repeated until an exit condition is met.

Galapagos can be used for MOO when using aggregation methods like weighted sum or
reformulating the objectives and adding dependencies. Nonetheless it was not designed for
MOO. However, it shows the basic steps to implement an optimization tool. Many other
optimization tools extend on these ideas. Further optimization tools can be installed as
plugins from the food4Rhino site [foo]. Most of them have their focus on single objective
optimization, only few support MOO. In the following we will look at some of the MOO
plugins.
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Figure 2.5: Wiring of Galapagos in Grasshopper.

2.3.2 MOO Plugins for Grasshopper
Octopus

One of the first publicly available plugins for MOO is Octopus [Vie13]. Its goal was to
offer a flexible design tool for exploration and optimization for architectural engineering.
Much as Galapagos, Octopus has outgoing wires with the difference that more than
one objective value can be connected. It offers two different EAs, SPEA2 and HypE.
Furthermore, Octopus allows adding one constraint, by wiring a boolean component to
the objectives input, were true means that a solution is feasible.

The GUI visualizes the optimization process in multiple different ways (see Figure 2.6).
In the main viewport solutions are shown as cubes, or meshes if a mesh was connected to
Octopus. The cube has five properties, x-, y-, z- position, color and size, each representing
one objective. Since there are only five properties, MOP with more than five objectives
cannot be fully visualized with this method. However, it is a visualization that is rather
intuitive and easy to learn.
Another visualization found in Octopus is the parallel coordinate plot. Parallel coordinate
plots are a common way to visualize high-dimensional datasets. No information is lost
using this method. The interpretation of this plot is quite complicated. In Octopus it
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Figure 2.6: Graphical user interface of Octopus.

is a visualization that complements the cube visualization by highlighting the line of
selected solutions in the main viewport.
Finally, a third plot shows the convergence of solutions on each objective. The elite
solution is compared against the upper- and lower-bounds of the Pareto front. The
development of each objective is plotted separately.
After optimization the numerical results can be exported as text.

Opossum

Opossum [Opo] is a plugin that originally started out as a model-based optimizer that
targeted computationally intensive simulations, e.g. day-lighting or building energy.
Since its publication there has been updates adding multiple MOO algorithms including
MOEA/D and NSGA-II. It further supports other MOO algorithms such as RBFMOpt
[RBF], MACO (Ant Colony) and NSPSO (Particle Swarm). To the best of our knowl-
edge, Opossum does not directly handle constraints. Constraints therefore need to be
reformulated into objectives.

Opossum has a simpler GUI design consisting of four tabs (see Figure 2.7). In the
first tab users can select an algorithm and set the optimization type, i.e. whether the
current problem is a minimization or maximization problem. Furthermore, there is a
visualization of the hypervolume. The hypervolume shows the convergence of the search.
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(a) Main tab (b) Settings tab

(c) Expert tab (d) Results tab

Figure 2.7: Graphical user interface of Opossum.

If the hypervolume value does not change much then the search is slowly converging and
it may be stopped earlier. The second tab holds settings for the stopping criteria of the
optimization process, like the maximal number of iterations without improvements. In
the ’Expert’ tab many more settings can be set through command line arguments, e.g.
population size, maximum number of iterations. The final tab holds all results from the
optimization process in a form of a table. Each line is one solution. Upon double clicking
one line the corresponding parameters are loaded into Grasshopper again. A direct export
is not supported, however, copy&paste into any text or spreadsheet program works.

Wallacei

Wallacei [Wal] is a MOO plugin with a goal of providing the user with one user interface
in which the algorithm, analysis of simulations and selection of optimal solutions can be
done. At the time of writing, Wallacei only supported the NSGA-II algorithm. However,
it provides a wide range of different visualization methods, including parallel coordinate
plot, objective space visualization using cubes (like in Octopus), standard deviation
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graphs, spider diagrams and trendlines, to help designers in analyzing the results (see
Figure 2.8. Furthermore, when a mesh, i.e. phenotype, from the parametric model is
linked to the optimization component, it is possible to display all resulting meshes from
the simulation runs side by side in Rhino. This enables users to directly compare the
resulting designs rather than objective values.

Figure 2.8: Graphical user interface of Wallacei.
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CHAPTER 3
Optimization in Industrial

Building

The BIMFlexi framework consists of two parametric models that are interconnected
[RWSK+22]: a model for automated generation of optimized production layouts and a
model for structural layout generation including the calculation of objectives. Each of
the models are implemented within a Grasshopper3D for Rhino script. An Excel file is
connecting the data flow between the two scripts. The optimization tool developed in
this thesis is build on top of the structural layout generation script. Figure 3.1 shows the
connections between the three parts. We outline the important parts of the two models
which are preceding steps to the structural optimization and describe the optimization
part in more detail as this is the main focus of the thesis.

3.1 Production Layout Generation and Optimization
In this section the important parts of the production layout framework are briefly
described. A more detailed explanation can be found in the work of Reisinger et. al.
[RZK+22] and Zahlbruckner [Zah21].

The production layout framework automatically generates multiple production layouts
and optimizes them using an evolutionary algorithm. An example of such layout is shown
in Figure 3.2. It takes multiple inputs, which are listed in Table 3.1. The production cubes
describe the geometrical properties of the production layout while the lean-factor matrix
and the transport intensity matrix describe the relational properties, where each cell of
the matrix represents a relation between two production cubes. The lean-factor matrix
is discrete and contains information on the neighborhood of a production cube. Four
states are possible: absolutely necessary, important and core, unimportant/indifferent,
and undesirable. As the name suggests, "absolutely necessary" means that two cubes
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Figure 3.1: Data flow and workflow between the three parts, production layout model,
structural layout model and the optimization tool, of the BIMFlexi framework

should be next to each other, "important and core" indicate that two cubes should be at
least close to each other, e.g. 0 or 1 cubes away, "unimportant/indifferent" means that
the placing of cubes does not matter and "undesired" means that two cubes should not
touch each other. The transport intensity describes the material flow between rooms.
For each pair of cubes the transport intensity is 0 or greater.

Constraints and objectives for production layout generation are listed in Table 3.2
and Table 3.3. The evolutionary algorithm uses a weighted sum approach to optimize
all objectives simultaneously. For the optimization all objectives are reformulated into
minimization problems. Feasible layouts are preferred over infeasible ones by the algorithm
and fitter layouts, i.e. smaller fitness values, are ranked higher. The resulting production
layouts are therefore ranked by the number of constraint violation in ascending order
first and then by ascending fitness values. The best four ranked layouts are exported
into an Excel file in order for the structural layout framework to read in. Users can also
manually manipulate the production layouts in the Excel file. Within the structural
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Figure 3.2: Production layout generated by the production layout generation and opti-
mization framework.

Input Description

Property size Size of the property in x and y dimension or in m2

Production cubes A list of rooms with minimum x and y dimension
as well as minimum area.

Lean-factor matrix A matrix of room neighborhood dependencies.

Transport intensity matrix A matrix of transport intensities between each pair
of rooms.

Table 3.1: List of decision variables

23



3. Optimization in Industrial Building

Constraints Description

Cohesive layout All production cubes should be connected, i.e. at
least 1/3 of the shorter side should be touching
another production cube.

Building area boundary The production layout should be contained by the
property.

Adhere to lean-factor absolutely
necessary

Neighborhood dependencies marked as absolutely
necessary should be touching each other.

Adhere to lean-factor undesirable Neighborhood dependencies marked as undesirable
should not touch each other.

Adhere to minimum dimensions
and area

Dimensions and area of each production cube should
be at least as great as the minimum dimensions and
area given by the input.

Table 3.2: Constraints for production layout generation

Objectives Description

Free building area The area covered by the production layout should
be minimized in order to have enough space for
future expansion.

Dense layout Maximize the layout density in order not to waste
area between cubes.

Production cube ratio The difference of the x-y ratio of cubes between
the minimum dimension and the generated pro-
duction cube should be minimal

Lean-factor neighborhood impor-
tant & core

Maximize the number of cubes that adhere to
the lean-factor neighborhood important & core

Minimize transport length Minimize the distance between rooms with trans-
port intensity higher than 0.

Table 3.3: Objectives for the optimization of production layouts
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layout framework the production layouts are then used as one of the flexibility objectives
where the objective is to maximize the number of different production layouts that one
structural layout can support.

3.2 Structural Layout Generation and Objective
Calculation

The script for the structural parametric model is written in Grasshopper3D for Rhino.
For a set of inputs it generates structural layouts and calculates the objectives needed
for the optimization. The script roughly consists of three main parts.

1. Preparation of input parameters: The script loads all necessary inputs from an excel
file. The file includes information on e.g. production layouts, property size, loads,
preferences of stakeholders. The input will be processed into multiple parameters for
the model, some of which are also linked as decision variables to the many-objective
optimization (MaOO).

2. Model generation and static analysis: After the parameters are set, the script
generates a model and does static analysis on it. It further calculates all necessary
values to check whether some constraints have been violated, e.g. stability.

3. Assessment: Finally, the framework calculates all objectives based on the generated
model.

The most important parts of the framework for the MaOO to work are the decision
variables, constraints and objectives. In total there are nine decision variables, seven
constraints and eleven objectives. All variables are listed and briefly described in Table
3.4, 3.5 and 3.6. A more detailed explanation of the parametric model and of all the
variables can be found in [Kno21] and [RKK21].

The decision space variables are discrete and are represented through a slider and a list.
As in most optimization plugins, our optimization tool changes the slider, whose value
acts as an index to the list, to generate a new solution.

Since the generation and evaluation of one structure with its objectives and constraints is
computationally expensive, especially for larger structures, it is important not to waste
computation time. Therefore, one modification has been made on the decision variables
regarding decision space constraints, i.e. constraints that can be evaluated prior to
optimization. We consider the constraints c7 and c8, which are limiting the building size.
The given decision variables can be grouped into geometrical parameters and structural
parameters. Geometrical parameters include the first four decision variables, which are
the primary and secondary grid size and number of fields, while the remaining ones
are structural parameters. The size of a building structure is mainly controlled by the
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Figure 3.3: Parametric model. The load bearing structure is generated around one of the
possible production layouts (colored in green).

Decision variables Description

d1 Primary Axis Grid Distance between two columns in meters (integer)
in x direction.

d2 Primary Axis Fields Number of columns in x direction

d3 Secondary Axis Grid Distance between two columns in meters (integer)
in y direction

d4 Secondary Axis Fields Number of columns in y direction

d5 Primary Structure Type Construction form and material of the primary
load bearing structure

d6 Secondary Structure Type Construction form and material of the secondary
load bearing structure

d7 Column Type Construction material of the columns

d8 Bracing Type Bracing system for walls and roof

d9 Retrofitting Retrofitting load for future retrofitting ability of
the system.

Table 3.4: List of decision variables
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Constraints Description

c1 Maximum stress utilization The utilization must be ≤ 1.

c2 Maximum structural displacement The displacement must be smaller than a
predefined threshold.

c3 Stability The building must be stable.

c4 Maximum secondary axis grid Secondary axis grid must be smaller than
the tertiary span width of the roof con-
struction.

c5 Maximum building height The building height must be smaller than
the maximum allowed height.

c6 Feasible production layouts Additional feasibility check of production
layouts in case of manual manipulation.

c7 Minimum building dimensions The building must be large enough to con-
tain at least one production layout.

c8 Maximum building dimensions The building must be smaller than the
property.

Table 3.5: List of constraints

geometrical parameters. To avoid structures that are too small or too big all combinations
of the four parameters have been filtered for feasible sizes and sorted by area.

Another decision space constraint is the user’s preference. In case the user has any
preferences concerning materials or specific geometrical properties prior to optimization,
the user may limit those parameters through an excel file. This will further reduce the
size of the search space. Any parameter that does not have more than one option due to
user preference will be removed from the optimization automatically.

Constraints are represented through boolean components and are all treated as hard
constraints, i.e. they are not allowed to be violated under any circumstances. If any of
the constraints are violated the solution is infeasible.

Objectives are represented through double precision floating point number components.
All objective values are greater than 0. Some objective values are already normalized
such that the values are always ranging from 0 to 1, while other objectives do not have
any bounds, e.g. costs. For the MaOEA all objectives need to be minimized. Therefore,
any objective that are to be maximized are multiplied by -1. Further discussion on the
objective calculation can be found in the paper from Reisinger et. al. [RWSK+22].
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Objectives Description

o1 Life Cycle Cost (LCC) Minimize cost over 25, 50 or 80 years

o2 Global Warming Potential (GWG) Minimize Life-cycle environmental impact

o3 Acidification Potential (AP) Minimize acidification potential

o4 Primary Energy Intensity (PEI) Minimize primary energy use

o5 PEI non-renewable (PEInt) Minimize non-renewable primary energy
use

o6 Recycling Rate Maximize recycling potential, e.g. use sep-
arable materials

o7 Retrofittability Maximize load-bearing capacity for future
loads.

o8 Expandability Maximize expandability of the production
area

o9 Flexibility in space Maximize building height reserve

o10 Flexibility in floorplan Minimize area that is occupied by columns,
i.e. reduce the number of columns.

o11 Production layouts Maximize the number of different produc-
tion layouts one structural layout can sup-
port.

Table 3.6: List of objectives

3.3 Many-Objective Optimization Tool

3.3.1 Algorithms

The optimization tool includes four algorithms: SPEA2, SPEA2+SDE, CTAEA and
a simple enumeration algorithm to evaluate all possible combinations. The latter was
added to have the possibility to evaluate the complete decision space if the decision
space is small enough due to various constraints, e.g. property sizes, user preferences,
etc. SPEA2 and the SDE adapted version both use the constraint dominance relation
to deal with constraints. In CTAEA the density estimation uses unique weight vectors
[LDZK14b]. For the generation of the weight vectors the number of divisions H was set
to the same number as the objectives, which is 11. The archive size for each algorithm
was set to the same size as the population size. Simulated binary crossover [DA+95]
and polynomial mutation [DG+96] is used as the crossover and mutation operator. The
distribution index, which is used to control the distribution of the offspring solution, were
set to 2 for both, crossover and mutation. The low index will generate solutions that
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Figure 3.4: C# optimization component. Decision variables, objectives and constraints
are linked via names

are further spread from the parents in order to have a higher diversity. On the other
hand, a higher number indicates a lower distribution. The generated solution will have
parameters closer to the parents.

The choice of algorithms covers multiple scenarios and lets us compare different charac-
teristics of the algorithms at the same time. SPEA2 and SPEA2+SDE are in general the
same algorithm but with different density estimators. In theory, for MaOO SPEA2+SDE
should perform better if the objectives are not highly correlated. On the other hand
SPEA2 may be used for lower number of objectives, i.e. the decision maker may not be
interested in all objectives in some cases. CTAEA handles constraints differently than the
other two algorithms. If the objective space is highly constrained CTAEA may perform
better than SPEA2 and SPEA2+SDE. This may be the case for very large grid sizes.

3.3.2 Linking to the Framework
The MaOO component is a C# script in Grasshopper (Figure 3.4) and is in the same
Grasshopper script as the parametric model for the structural layout. Because of the
DAG the optimization components need to be linked externally. Most of the optimization
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Figure 3.5: Optimization window of the tool.

plugins offer the ability to connect the sliders and objectives via a custom written wire.
For this thesis the wires are replaced by the component names. Adding or removing
decision variables, objectives and/or constraints can therefore be done by simply adding
or removing the names. This setup also allows the automatic addition or removal of
parameters, e.g. in case stakeholders are not interested in them. The MaOO component
itself has four inputs: The names of the decision variable sliders, objective and constraint
components as well as a button to open the optimization window (see Figure 3.5). Upon
opening the optimization window the script reads in the names of the components and
tries to find the corresponding components in the Grasshopper document. To generate
a solution the algorithms change the sliders and issue a recalculation in Grasshopper.
After recalculation, values in the objective and constraint components can be read and
used for further steps of the chosen algorithm.

3.3.3 User Interface and Solution Visualization
Within the optimization window one of the four algorithms can be selected for the
optimization. Except for the complete enumeration method, the number of generations,
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population size, crossover and mutation rate can be set. Per default they are set at 50,
20, 0.95 and 0.10 respectively.

The optimization can be stopped at any time. When the optimization is stopped, the
current Pareto front will be listed. Each line contains the input parameters for the
framework, objective values and constraint violations. The actual model of the structure
is not saved. To view the model the solution needs to be calculated again such that
Grasshopper visualizes the model. As optimization may take very long, depending on the
structure, the MaOO component gives an estimated finishing time as well. Furthermore,
one single solution or multiple solutions can be selected from the list to be exported into
an Excel file. For analysis purposes, all evaluated solutions from one search are currently
saved and can all be exported to Excel as well.

Per default the list is sorted by the normalized euclidean distance to the ideal point. For
normalization the nadir and ideal points were used. As we are dealing with trade-off
solutions, weights have been added for post sorting. Since the sorting happens after
optimization, the decision maker can sort the Pareto front with different weights on the
objective to target specific trade-off solutions without the need to restart the optimization
process. Solutions from previous runs can also be imported for further analysis.

Additionally to the list representation, solutions are visualized using a radar diagram.
Since we do not know the objective values’ range, the radar diagram shows the relative
performance of one solution compared to the approximated Pareto front. More specifically,
we use the nadir point and the ideal point to normalize the objective values into the
range from 0 to 1, where 0 means worst and 1 best performing objective in the current
Pareto set. For example the radar diagram in Figure 3.5 shows that the solution
supports all provided production layouts and performs well in terms of lifecycle costs
and retrofittability, however, is only doing moderate in terms of GWG, AP, PEI, PEInt
and Recycling Potential compared to all the other solutions in the Pareto set.

3.3.4 Implementation Details
The whole optimization tool is written in C#. Figure 3.6 shows a class diagram of the
most relevant parts of the tool.

• OptimizationForm: This class inherits from System.Windows.Forms. It displays
data collected from optimization and contains event handlers to handle user inputs.
It is also the class holding all information.

• GrasshopperCommunicator: As the name suggests this class handles communica-
tions with the Grasshopper3D script for calculating the structural layout. Data are
read in and written out through an instance of this class.

• OptimizationAlgorithms: All algorithms derive from this abstract class. It is an
interface for the OptimizationForm to start the optimization process and retrieve
results from the optimization.
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Figure 3.6: Class diagram of the optimization tool highlighting the most important parts
and associations.

• EvolutionaryAlgorithm: This abstract class inherits from OptimizationAlgorithm
and is the base class for all evolutionary algorithms. It contains variables that
are only relevant for evolutionary algorithms, e.g. population size, number of
generations.

• EnumerationAlgorithm, SPEA2, SPEA2SDE, CTAEA: These classes implement
the four different optimization algorithms. The EnumerationAlgorithm class will
enumerate over all possible combinations of the structure, while the other three
classes implement the SPEA2, SPEA2+SDE and CTAEA algorithms respectively.

• Individual: An instances of this class represents one solution. It contains the inputs
for the structural parametric model, objective values and constraint violations. The
other three classes operate on instances of this class.

When a user opens the optimization window the C# script will create an instance
of OptimizationForm which takes the Grasshopper document and the names of the
decision variable, constraint and objective components linked to the C# component. The
Grasshopper document is the script in which the C# component is contained. It therefore
has access to all components that are within the structural layout script. To prevent
Grasshopper from reinstantiating the OptimizationForm class when input updates to
the C# component occur, i.e. releasing the "Open Optimization Window" button, the
OptimizationForm object is saved in a static variable. This object holds the whole state
of the optimization tool.
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Figure 3.7: Activities when opening the optimization window.

The OptimizationForm proceeds to instantiate a GrasshopperCommunicator object
which will take the component names. The GrasshopperCommunicator searches in the
Grasshopper document for the components with the given names and will save the
reference to those components for later use. After that, the OptimizationForm shows the
user interface. The whole process is visualized in an activity diagram in Figure 3.7.

The optimization process is depicted in Figure 3.8. When the user starts the optimiza-
tion, the OptimiztionForm will read in the input from the text fields. It creates an
instance of the correct OptimizationAlgorithm with the given inputs. It also receives the
GrasshopperCommunicator instance for solution calculation. The algorithm randomly
generates an initial population and proceeds to optimize the population. Details about
the specific algorithm can be found in the original papers [ZLT01], [LYL13], [LCFY18].
The optimization stops when the number of generations is reached or when the user
stops the optimization. In both cases the latest solution set, i.e. Pareto front, is taken
and its ideal and nadir point is calculated as well as the distances of the solutions to the
ideal point. The OptimizationForm then takes the solution set and sorts it by distance
to ideal point and finally displays the results to the user.

In order to get the objective values and the constraints of one structural layout the
optimization tool needs to initiate the solution calculation from the Grasshopper script.
This process is shown in Figure 3.9. The OptimizationAlgorithm first generates the
inputs for the individual. For the initial population the input values are random. For the
remaining generations the inputs are obtained by crossover and mutation. The Grasshop-
perCommunicator takes the individual and sets the sliders of the Grasshopper document
to the inputs of the individual and initiates a recalculation of the Grasshopper script.
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Figure 3.8: Activities when starting an optimization.

Figure 3.9: Activities when calculating a structural layout
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When the recalculation is finished it reads the values from the objective and constraint
components and saves the results back into the individual. The OptimizationAlgorithm
then proceeds with the optimization process.
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CHAPTER 4
Evaluation and Results

The evaluation of the optimization tool consists of two parts, each trying to answer
one of the research questions stated in the Introduction (Chapter 1). Both parts were
conducted independently and will be presented separately in this chapter. The first part
investigates the usability of the tool and users’ acceptance of the automatically generated
structural layouts. In this part the use of the optimization tool is compared against
the manual use and results are obtained through questionnaires and notes on selected
or preferred structures from users. In the second part we will look at the algorithmic
side of the tool. The three implemented algorithms SPEA2, SPEA2+SDE and CTAEA
are compared in terms of convergence and diversity of the obtained Pareto fronts. The
evaluation is conducted with three different test cases provided by the civil engineers
from the BIMFlexi project. The goal of this part of the evaluation is to find out which
algorithm, if any, works best for our use case. Finally, time analysis on the optimization
process is given as well.

4.1 User Study
A user study was conducted to compare the manual use of the parametric optimization
and decision support tool (method M) to the automated, i.e. no manual adjustment
of parameters, optimization tool (method A) [ZRWS+22] [RWSK+22]. The goal was to
investigate whether users would prefer the generated designs from the automated method
over the designs that were generated manually.

In total 36 students from TU Wien have volunteered to take part in the study. Twenty-
three participants had a background in architecture and thirteen in engineering (eight
civil engineers, three spatial planners and one mechanical engineer). Qualitative and
quantitative feedback was collected using questionnaires (Appendix A: 6). There were
thirty-three closed and three open questions. The closed questions were formulated as
a 5-point Likert scale questions. With exception to one question, all questions were
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positively formulated where 5 means the most positive response. The rating of the
inverted question was adjusted for the evaluation. Users have been asked about their
satisfaction with the presented technology, using the technology acceptance model (TAM)
by Davis (1989), and their satisfaction on people-process-level for both methods. More
precisely the questionnaire contains questions about six different sub-categories: ease of
use, usefulness, visualization, process satisfaction, outcome satisfaction and collaboration
satisfaction. Additionally, data have been collected on the selected or preferred structural
layouts. The students had to fill out a layout sheet that contained information on the
selected parameters for the structural layout and choose one final layout from either
method M or method A.

4.1.1 Experimental Setup
The user study was conducted at an office at TU Wien. All participants had a tutorial
on how to use the framework and the optimization tool prior to the study. Since the
optimization takes a while it was run beforehand using the default settings (algorithm:
CTAEA, population: 50, generation: 20, crossover: 0.95, mutation: 0.1) and results were
imported for the study. The participants tested the tools in groups of two. All groups
tested both methods. Half of the groups started with method A and the other half with
method M to make the results more comparable in case there is a learning effect between
the two methods. The same production layouts were used for both methods.

The participants were given the assignment to design a structural building around already
generated production layouts. Before starting the exercise the groups were instructed
to take different roles during the discussion of selections, e.g. architect, civil engineer,
owner, to represent different stakeholders. Furthermore, each group received a layout
sheet where they could write down the parameters and objective values of their layout
choices for method A and the generated layouts for method M.

The groups were asked to choose or generate at least three layouts for each method.
Then, for each method they had to decide on one layout from the multiple they generated.
In case of method M participants had to discuss different building variants they were
interested in and decide on parameters first before manually setting them. Participants
testing method A would look and click through the variants that the optimization showed.
For both methods all parameters of the generated structural layouts were noted.

There was around 30 minutes time to do the testing and 15 minutes to fill out a
questionnaire for each method. At the end the group had to decide between the one
layout from method A and the one layout from method M.

4.1.2 Results
Results presented in this section are based on 72 questionnaire responses of participants,
36 for each method, and 18 layout sheets (one from each group). Figure 4.1 shows the
mean score in every sub-category for each method. The evaluation reveals that the users
were overall satisfied with both methods. Except for the process satisfaction with method
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Figure 4.1: Evaluation of the manual (M) and automatic (A) method. From [ZRWS+22].

A (avg. 3.81), each category had an average rating higher than four. For both methods
collaboration satisfaction was rated the highest (method A: 4.34, method M: 4.66).

Comparing the manual and the automated method, results show that the manual approach
was rated higher in every sub-category. While the differences in technology satisfaction
was rather small (differences: ease of use: 0.2, usefulness: 0.04, visualization: 0.05),
participants were less satisfied on the people-process-level (differences: process: 0.22,
outcome: 0.25, collaboration: 0.32).

Further evaluation was done on different disciplines. Figure 4.2 shows the satisfaction
with technology for each method, separated by discipline. Overall, engineers were more
satisfied with the technology of both methods than architects. One exception to this is
the ease of use for the automated version, were architects gave a higher score (architects:
4.09, engineers: 3.85). Architects seem to not have a preference for either method. The
difference in scores between both methods are marginal (differences are less than 0.05 for
all subcategories). On the other hand, engineers were more satisfied with the manual
approach (differences: ease of use: 0.57, usefulness: 0.15, visualization: 0.13).

Comparison on people-process-level for the two disciplines is shown in Figure 4.3. En-
gineers rated the process and collaboration satisfaction for both methods fairly similar
(differences 0.04 and 0.02 respectively) while there is a clear preference of the manual
method by the architects (differences 0.35 and 0.47). Both groups were more satisfied
with the outcome from the manual approach.
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(a) manual (b) automated

Figure 4.2: Results for technology satisfaction of the manual (a) and automatic (b)
method separated by discipline. From [ZRWS+22].

(a) manual (b) automated

Figure 4.3: Results for satisfaction on people-process-level of the manual (a) and automatic
(b) method separated by discipline. From [ZRWS+22].

Concerning the choice of the final structural layout, ten groups selected a layout from
method M and eight groups selected a layout from method A. Though there seems to be
a slight preference for method M, the one-sample chi-square test shows that the difference
is not statistically significant (chi-squared=0.22 and p=0.64). Five groups out of nine
that started out with method M selected an automatically generated layout as their final
choice. Whereas only three groups from the nine groups starting with method A chose
an automatically generated layout. Results are summarized in Table 4.1

The structural layouts were further compared by their objectives and results are listed in
Table 4.2. From the eighteen layout sheets, fourteen were trade-off choices, i.e. there was
no layout that was better than the other layout in all objectives. The choice of the final
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Chose method M Chose method A

Started with method M 4 5

Started with method A 6 3

Total 10 8

Table 4.1: Final structural layout choices

Best layout Chose method M Chose method A Total

Trade-Off 9 5 14

Layout M 1 1 2

Layout A 0 2 2

Table 4.2: Final structural layout choices considering objective values.

layout was therefore a preference question, e.g. the participants preferred lower cost over
more flexibility. Two groups had an automatically generated layout that was better than
their favorite manual layout. In both cases they chose the layout from the optimization
tool. On the other hand, two groups had a manually generated layout that was better
than the final one from method A. One of the group chose the manual one, while the
other group selected the layout from the optimization tool.

A clear difference can be seen in the choice of the structure types. Figure 4.4 lists the
combinations of primary and secondary structure type of all layouts that were recorded
by the participants and Table 4.3 shows the number of layouts that had in both directions
the same material. When participants manually generated their layouts there is a clear
preference for timber girders (TG) for both directions, while T-precast concrete beams
(C) were by far the most selected one from method A. Another observation is that during
manual generation participants very often seem to select the same material for both
directions, e.g. timber/timber or steel/steel. This is not the case using the optimization
tool.

Material Method M Method A

Timber 28 8

Steel 25 3

Concrete 8 24

Table 4.3: Number of structural layouts that had the same material for primary and
secondary structure type
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(a) manual (b) automated

Figure 4.4: Structure type selection for manually generated layouts (a) and automatically
generated layouts (b). TG=Timber Girder, TF=Timber Framework, C=Concrete T-
Beam, SF=Steel Framework, SG=Steel Girder

Finally, in the questionnaire the participants were asked for potential improvements of
the tool. One third of the participants stated that the calculations of the objectives were
not transparent for both methods. For method M users found that it would be helpful
if it was possible to store multiple variants during the search to better compare them.
Participants wished for a more refined user interface with a detailed description of the
MOO outputs. Related to this the students asked for a better visualization or indication
of the variant’s material, as they understand names or colors while the tool would only
show numbers.

Concluding, the results of this study reveal that the optimization tool was well accepted
and users were satisfied with its use. However, users preferred the manual method slightly
more. Therefore, there is much more room for improvements for the optimization tool.
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4.2 Algorithm Comparison
The three implemented algorithms, SPEA2, SPEA2+SDE (ongoing referred to as SDE)
and CTAEA have been compared in their performance regarding convergence and diversity
using the hypervolume (HV) [ZT98] and inverted generational distance plus (IGD+)
metric [IMTN15]. The hypervolume refers to the volume in n-dimensional space (n > 3).
To calculate the hypervolume of a Pareto front a reference point r = (r1, r2, ..., rm), were
m is the number of objectives, is needed to span a hypervolume between each solution in
the Pareto front and r. The union of these individual hypervolumes is the hypervolume
of the Pareto front. r is a parameter that needs to be manually set. In our evaluation we
set r = (1.1, 1.1, ..., 1.1) to better reflect the diversity aspect of the normalized Pareto
front. The closer a solution set is to the approximated Pareto front and the more wide
spread the solutions in the set are the higher the hypervolume is. A higher hypervolume
value is therefore a better result. On the other hand the IGD+ metric measures the
distance from a set to the approximated Pareto front. A lower value is therefore desirable.
Both metrics were calculated using the pymoo library [BD20]. Furthermore, the number
of feasible and unique solutions in each solution set, i.e. Pareto front obtained by each
algorithm, is compared between each algorithm and approximated Pareto front.

4.2.1 Experimental Setup
Three different example facilities with different search space sizes have been used to
test the algorithms. The search space size is mainly dependent on property size and

Figure 4.5: Production layouts for test case 1
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Figure 4.6: Production layouts for test case 2

production layout sizes. Each test case includes four different production layouts that
were generated automatically in a preceding step [Zah21].

Test case 1 is a food and hygiene facility. The property size is 37500 m2. The four produc-
tion layouts have an area of around 3200m2, 3110m2, 3500m2 and 3380m2 respectively
(see Figure 4.5). For test case 1 there are around 128 000 possible input combinations.

The second test case is a metal processing facility with a property size of 10000m2. Three
production layouts have an area of around 3250m2 and one has an area of 3800m2 (see
Figure 4.6). This test case has around 20000 possible input combinations.

The last test case is a food and hygiene facility again with 7125m2. The production
layouts have an area of around 3160m2, 3280m2, 3330m2 and 3100m2 (see Figure 4.7).
Test case 3 has around 6000 possible parameter combinations.

For each test case and algorithm the same optimization parameters were used: population
size = 50, number of generations = 20, crossover rate = 0.95 and mutation rate = 0.10.
The input values for the parametric model like structure type or axis grid sizes were not
restricted through all the test runs. Table 4.4 lists the decision variable inputs that were
considered.

Five runs for each algorithm and test case were done. During each run the resulting
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Figure 4.7: Production layouts for test case 3

Pareto front containing 50 solutions has been saved. For evaluation purposes we also
logged all 1050 solutions that were generated during the search (1000 solutions due to
the population size and the number of generations, and the additional 50 to initialize the
archives).

To calculate the IGD+ metrics an approximated Pareto front is needed. Usually this
is calculated by joining the Pareto front from each run. However, since more solutions
have been logged during search we approximate the Pareto front using all solutions that
were calculated during all runs for each test case. This yields a better approximation
as it is less restricted by the algorithms. For better readability, going forward we will
use the term "approximated Pareto front" to refer to the Pareto front obtained from all
algorithms and runs and use "solution set" to refer to the Pareto front that was obtained
by a single algorithm. Ideal and nadir point are calculated from the approximated Pareto
front. The objectives are then normalized using both ideal and nadir points such that all
objectives are in the range of 0 and 1, where 0 is better than 1. For the HV the objectives
are normalized as well and a reference point of r = (1.1, 1.1, ..., 1.1) is used. Since this
value is slightly higher than the worst normalized value, i.e. 1, the HV value will better
reflect the diversity of a solution set.
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Decision Variables Possible inputs

Primary Axis Grid [8, 12, 16, 20, 28]

Primary Axis Fields 1 - 15

Secondary Axis Grid [6, 12, 18]

Secondary Axis Fields 1 - 20

Primary Structure Type
[Steel Framework, Steel Profile, T-Beam Pre-
cast Concrete, Glued Laminated Timber Beam,
Timber Framework]

Secondary Structure Type [Steel Framework, Steel Profile, Beam Precast
Concrete, Timber Beam]

Column Type [Precast Concrete-Quadratic, Steel-HEM]

Bracing Type [Clamped, Joint XY - 2X-2Y]

Retrofitting [0, 1, 2]

Table 4.4: Decision variables and ranges

4.2.2 Results
In this section the results for each test case are presented separately. First, for each
test case the search space properties are evaluated to have a better insight to why
the results are as they are. This includes information about how many unique and
feasible solutions have been found during all runs for the specific test case as well as
the size of the approximated Pareto front. Afterwards the HV and IGD+ are shown,
containing the mean value and standard deviation from five runs. As mentioned, the
higher the HV value the better. On the contrary, a lower IGD+ value is desirable. For
reference, the hypervolume of the approximated Pareto front (labeled as PF) is always
included. The IGD+ value of the approximated Pareto front is always zero. Furthermore,
solution sets are compared against the approximated Pareto front and between each
algorithm. For each test case four structural layouts are presented - the cheapest, the
most environmentally friendly, the most flexible or the most balanced structure, i.e.
minimum distance to ideal point. The structures have been selected according to the
weighted sorting, i.e. for the most flexible structure all flexibility objectives were set to
100% while all other objectives were set to 0. The best ranked structure after sorting
was selected. Finally, time measurements are reported for all three test cases combined.

Test Case 1

Combining all calculated solutions from each run and each algorithm a total of 15750
solutions have been evaluated for test case 1. The results for the search space analysis is
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Figure 4.8: Solution distribution of test case 1. Solutions combined from five runs.

(a) feasibility of evaluated search space (b) size of Pareto front

Figure 4.9: Search space analysis of test case 1. Average number and standard deviation
from five runs for each algorithm.

visualized in Figure 4.8. Out of the 15750 solutions 10152 are unique solutions. 1922
solutions were constrained by objective space constraints and 8230 solutions were feasible.
Therefore, around 18.93% of the search space is infeasible. The approximated Pareto
front of test case 1 consists of 4936 solutions and makes around 48.62% of the evaluated
search space. According to this, almost every second solution is a nondominated solution.

Further breaking down the search space by each algorithm Figure 4.9a shows that relatively
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(a) HV (b) IGD+

Figure 4.10: HV and IGD+ of the solution sets from test case 1

less duplicates have been evaluated meaning that most duplicates from Figure 4.8 were
either across multiple runs within the same algorithm or across multiple algorithms. SDE
had the highest number of duplicate evaluation (avg. 22), which is around 2% of the
search space. On the other hand SDE found the highest number of feasible solutions (avg.
914), while CTAEA has the highest infeasible number of solutions (avg. 271). SPEA2
lies in between SDE and CTAEA regarding feasible and infeasible solutions (avg. 163
and 871 respectively). However, looking at Figure 4.9b SPEA2 has the smallest unique
and feasible solution set (avg. 37). CTAEA has the largest overall solution set (avg. 46)
while SDE has the largest nondominated solution set (avg. 35). With only 4 dominated
solutions on average, SDE’s solution set has the highest percentage of nondominated
solutions.

The HV and IGD+ values for each algorithm are shown in Figure 4.10a and 4.10b. It
can be derived that SDE performs the best, while SPEA2 is ranked last in terms of both
values. The approximated Pareto front has a HV of 0.43. The HV value for CTAEA
and SPEA2 are around 0.12 and 0.10, while SDE has an avg. HV value of 0.20. SDE,
therefore, performs around 100% better then CTAEA and SPEA2. When looking at the
IGD+ value, again, SDE performs better. SDE has a value around 0.14, while CTAEA
and SPEA2 have a value around 0.22 and 0.28 respectively, which is around 57% and
100% worse than SDE. All in all, for test case 1 SDE performs best, followed by CTAEA
and then by SPEA2.
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(a) Cheapest structure. Grid: 28m x 6m,
x: Timber Framework, y: Timber Beam

(b) Most environmentally friendly structure.
Grid: 16m x 12m, x: T-Beam Precast Con-
crete, y: Beam Precast Concrete

(c) Most flexible structure. Grid: 20m x 18m,
x: Steel Profile, y: Steel Framework

(d) Most balanced structure. Grid: 20m x 18m,
x: T-Beam Precast Concrete,
y: Steel Framework

Figure 4.11: Four different structural layouts for test case 1, each focusing on different
objectives: (a) cheapest, (b) most environmentally friendly, (c) most flexible, (d) most
balanced.

Figure 4.11 shows four structures sorted by different objectives. The cheapest structure
has a wide primary and narrow secondary grid axis (28m x 6m). The whole structure
size is kept to a minimum. It only fits one production layout. Timber framework and
timber beam is used as the roof construction type. The most environmentally friendly
structure is larger in size and has an axis grid of 16m x 12m. The roof construction type
is beam precast concrete in both directions. The most flexible structure spans most of
the property. It is the largest structure of all four. Steel profile and framework is used for
the roof construction. The most balanced structure, i.e. all objectives weighted equally,
is a structure with a grid size of 20m x 18m. It spans a large portion of the property and
uses precast concrete and steel framework as the roof construction type.
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Test Case 2

Figure 4.12: Solution distribution of test case 2. Solutions combined from five runs.

(a) feasibility of evaluated search space (b) size of Pareto front

Figure 4.13: Search space analysis of test case 2. Average number and standard deviation
from five runs for each algorithm.

Search space analysis for test case 2 is depicted in Figure 4.12. Since test case 2 has
a smaller search space than test case 1, the number of unique solutions obtained is
smaller, which is 6990. Therefore, all runs combined have evaluated around 35% of the
complete search space. Around 38.5% of the obtained solutions are infeasible. This is a
much higher percentage than in test case 1. Out of the 4299 feasible solutions, 1421 are
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nondominated and form the approximated Pareto front for test case 2. The approximated
Pareto front makes around 20.33% of the search space.

(a) HV (b) IGD+

Figure 4.14: HV and IGD+ of the solution sets from test case 2

Breaking down the search space by algorithm Figure 4.13a reveals that CTAEA has a
very high contribution of infeasible solutions with high variance. Out of 1050 solutions,
more than 50% where infeasible. Both SPEA2 and SDE covered around the same ratio of
feasible and infeasible solutions, around 80% feasible and 20% infeasible solutions. Figure
4.13b shows that the solution set sizes on average with 36 solutions are smaller than in
test case 1. The ratio of nondominated solutions is very low for SPEA2, less than 30%.
The number of nondominated solution obtained by CTAEA is less than 50%, which is
more than SPEA2 even though it found less feasible solutions. SDE has on average the
smallest solution set but the highest number of nondominated solutions.

Out of the three algorithms SDE performs the best again. Figure 4.14a and 4.14b
show that SDE had the highest HV (avg. 0.13) and the lowest IGD+ value (avg. 0.12)
compared to the other two algorithms. SDE’s HV value is more than 100% better than
that of CTAEA or SPEA2 (both avg. 0.05) and its HV covers more than 50% of the HV
of the approximated Pareto front (avg. 0.23). Regaring IGD+, CTAEA (avg. 0.27) and
SPEA2 (0.26) have a value that is more than 100% higher than SDE’s. Furthermore, the
variance on SDE is small as well (0.01), while the variance of CTAEA on IGD+ with
around 0.08 is quite large. On this test case CTAEA and SPEA2 perform equally well
and SDE outperforms both.
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(a) Cheapest structure. Grid: 8m x 6m,
x: Timber Framework, y: Timber Beam

(b) Most environmentally friendly structure.
Grid: 8m x 6m, x: T-Beam Precast Concrete,
y: Beam Precast Concrete

(c) Most flexible structure. Grid: 16m x 12m,
x: Steel Profile, y: Steel Profile

(d) Most balanced structure. Grid: 20m x 18m,
x: T-Beam Precast Concrete,
y: Steel Framework

Figure 4.15: Four different structural layouts for test case 2, each focusing on different
objectives: (a) cheapest, (b) most environmentally friendly, (c) most flexible, (d) most
balanced.

Figure 4.15 shows the cheapest, most environmentally friendly, most flexible and most
balanced structural layouts for test case 2. The roof structure type for all three structures
are the same as in test case 1. Only the grid sizes vary. The first two structures have the
most narrow grid, while the flexible and balanced structures have a more wider grid. Not
surprisingly, the cheapest has the smallest structure while the most flexible structure is
the largest.
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Test Case 3

Figure 4.16: Solution distribution of test case 3. Solutions combined from five runs.

(a) feasibility of evaluated searchspace (b) size of Pareto front

Figure 4.17: Search space analysis of test case 3. Average number and standard deviation
from five runs for each algorithm.

Test case 3 has the smallest search space out of all three test cases. Even though the
number of calculated solutions highly surpasses the size of the search space (around 6000
possible combinations), only 4022 unique solutions were evaluated and 11728 evaluations
were duplicates (see Figure 4.16). 354 solutions were infeasible, which is about 9% of
the evaluated search space. The approximated Pareto front encompasses 1467 solutions
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which makes around 40% of the feasible solutions.

Figure 4.17a shows that all three algorithms covered around the same size of feasible and
infeasible solutions. All three found between 950 and 970 feasible solutions. CTAEA
found slightly more infeasible solutions (avg. 87) compared to SPEA2 and SDE (avg.
63.6 and 71). On the other hand SPEA2 and SDE found slightly more duplicates (avg.
20.4 and 27.2) compared to CTAEA (avg. 8.8). In terms of solution sets (see Figure
4.17b) SDE has the smallest overall set (avg. 31.2). SPEA2 and CTAEA have a larger
set but include more solutions that are dominated.

Even though SDE has the smallest solution set on average Figure 4.18 shows that its
solution set performs better than that of CTAEA or SPEA2. The HV obtained by SDE
(avg. 0.19) is again on average around 100% better than that of CTAEA (avg. 0.09)
and SPEA2 (avg. 0.08) and covers more than 50% of the HV from the approximated
Pareto front (avg. 0.32). Similarly, the IGD+ value from SDE solution sets (avg. 0.15) is
smaller compared to CTAEA (avg. 0.25) and SPEA2 (avg. 0.32). Overall, SDE performs
best for test case 3, followed by CTAEA and SPEA2.

(a) HV (b) IGD+

Figure 4.18: HV and IGD+ of the solution sets from test case 3

The results of this study suggest that SDE is the best performing algorithm by far out of
the three algorithms with the given parameters for the optimization. CTAEA did slightly
better than SPEA2. In conclusion this study suggests that SDE should be the preferred
optimization algorithm for many-objective optimization of industrial building structures.

Figure 4.19 shows four resulting structural layouts for test case 3. The most flexible
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(a) Cheapest structure. Grid: 20m x 12m, x:
Timber Framework, y: Timber Beam

(b) Most environmentally friendly structure.
Grid: 12m x 12m, x: T-Beam Precast Con-
crete, y: Beam Precast Concrete

(c) Most flexible structure. Grid: 12m x 18m, x:
Steel Profile, y: Steel Framework

(d) Most balanced structure. Grid: 12m x 18m,
x: Steel Profile, y: Steel Framework

Figure 4.19: Four different structural layouts for test case 3, each focusing on different
objectives: (a) cheapest, (b) most environmentally friendly, (c) most flexible, (d) most
balanced.

building is also the most balanced one. With exception to the balanced structure, the
first three structural layouts have the same roof construction type and only the grid sizes
vary.

Time Measurements

For each test case and run the time was measured as well. The runs were done on a
Windows 10 Pro machine with an AMD Ryzen 7 1700 Eight-Core Processor and 32 GB
RAM. Figure 4.20 summarizes the average measured time in hours for each algorithm
and test case over 5 runs. However, the displayed time is the time spend computing the
structures and the objectives and therefore does not contain the time consumed by the
algorithms as the amount of time consumed by the algorithm is very small compared to
the structure generation. We confirmed that the computation time of the algorithm is
negligible in comparison to computation time for structures and objectives by doing one
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Figure 4.20: Average optimization time over 5 runs in hours (y-axis) for each test case
and algorithm (x-axis).

run for each algorithm for test case 2 and 3. Two different time spans were measured.
First, the time for each structure generation, and secondly, the total time of the whole
optimization. The time difference between the sum of all generated structures and the
total time is the time that was consumed by the algorithm for optimization. In both
cases, SDE and SPEA2 take around 25 seconds, and CTAEA takes around 3 minutes
and 25 seconds confirming that the most time is spend on structure generation.

Comparing all three test cases, test case 1 took the longest to optimize. Test case 1 has
the largest property and less compact production layouts. As a result larger structures
are generated. We hypothesize that larger structures need more computation time and
therefore lead to longer optimization time. Throughout all runs for test case 1 the fastest
optimization run was finished after 11 hours while the longest took 37 hours. On average
CTAEA finished the earliest, followed by SPEA2. Optimizations with SDE took the
longest (avg. 31 hours). However, since these times do not include algorithm computation
time, it only can be concluded that SDE generated layouts that took longer to compute.
Optimizations on test case 2 were a little bit faster. The fastest run took around 3.5
hours. The longest run took around 18 hours. CTAEA took the least time to optimize,
followed by SPEA2 and SDE. Finally, test case 3 took the least time to optimize for
all algorithms (between 2.5 and 4.5 hours). On average structural layouts generated by
CTAEA took the longest to compute on test case 3. Compared to test case 2 and 1,
there is only a small deviation in time on test case 3 for all algorithms.
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CHAPTER 5
Discussion and Possible

Improvements

5.1 Limitations
Both, user and algorithm study, were conducted independently and did not influence the
setup or results of the other study. Especially, the user study may have profited by the
outcome of the algorithm study, since the choice of the algorithm have a high impact on
the final solution set that was presented to the users. Furthermore, both studies were
limited by computation time of the generation of structural elements and calculation of
objectives. The results of the measured times suggest that larger structures take longer
to compute. Additionally, we found that the structure type influences the time as well.
Structures using Steel Frameworks take longer to generate. The generation of a structure
and the calculation of the objectives takes a few seconds to multiple minutes depending
on the structure type and size. Hence, the whole optimization process may take several
hours to days. Users were not able to run the optimization themselves, which may have
given us further insights of the usability and user preferences. The comparison of the
algorithms was limited to only one parameter set. Moreover, for a larger search space a
bigger population size may be more beneficial, but would also drastically increase the
computation time. It also has been noticed that during different runs the CPU utilization
would vary greatly. Sometimes CPU utilization was at 100% over the complete run,
at other times it utilized only 20% for one run, resulting in a longer optimization run.
Nonetheless, through both studies important points have been discovered.

5.2 User Study
The first part of the evaluation tries to answer the first question of the thesis, whether the
optimization tool provides a good overview of different designs and whether it supports
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users in their decision making. The results indicate that the tool was able to assist the
participants in early planning phases and the users found the tool useful. On average
the tool scored 4.09 out of 5. Furthermore, users had to select a final layout from either
method A or M. Sixteen out of eighteen cases the automatically generated layouts did not
produce worse solutions. The tool, therefore, can compete with the manual generation in
terms of objective optimization.
However, overall users were more pleased with the manual method than the automated
method, i.e. the optimization tool. In the category technology satisfaction engineers
were less satisfied with the optimization tool while architects rated both methods almost
equally. This reveals that some needs that only concerns engineers were not covered by
the tool. The answers to the qualitative questions indicate that information need to be
presented in a more understandable way, e.g. names instead of indices. This can easily
be added to the list representation. Additionally, the columns should be rearranged or
shortened. The most interesting results to the users are the objective values and the
corresponding input values. Therefore, these columns should be put in front. Constrained
solutions can either be filtered and completely removed or expressed with a single column
using an error code or a string with the violated constraints.
During the study participants would also ask why the radar diagram sometimes shows
zero for some objectives, as zero is intuitively understood as no cost, no flexibility, etc.
instead of the worst performing objective in the set. The radar diagram is a good
visualization for a fast comparison between a few different solutions. Used correctly, the
volume and shape can give information about the underlying data. The problem is that
the scale is understood as values rather than a rating. A fast and easy way is to inform
users about what the scale means. Adding a short text to describe the values, i.e. "0 -
worst" and "1 - best", can be a first step to reduce confusion. Additionally, an informative
text can be added to describe in detail how these values are obtained.
Architects were less satisfied in all subcategories on people-process level while engineers
only rated the outcome satisfaction noticeably lower. A possible reason for this might be
the lack of possibilities to control the search space. Due to time constraints, participants
were not able to select their preferred material or combination of materials. Furthermore,
during the study they were also not allowed to manually fine-tune the automatically
generated layout to include their preferences. In real world application there would not
be such constraints. Ideally, users would use the optimization tool to find good solutions
and further refine the solutions according to their preferences, as designing often involves
subjective elements. Moreover, the parametric model concentrates a lot on the technical
aspects and gives less attention to the visualization of look and feel of such structures.
Generally, an interesting but not surprising discovery is that the aesthetics of the buildings
should be considered in some way as well. There has been a clear preference in choosing
the same material for both primary and secondary structure types. Users would more
likely choose timber and steel when using method M, which looks more appealing than
concrete. The combinations timber/timber and steel/steel were recorded very often. The
optimization tool, however shows the opposite - many concrete/concrete combinations.
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It also has been noted that the first best ranked layouts from the optimization, according
to the distance to the ideal point, had concrete/concrete as their material, which would
explain the high numbers for method A. Consideration of aesthetics can be added in at
least two ways, either before or after optimization. Prior to the optimization, it can be
incorporated as one of the objectives for the optimization. Since this is a rather subjective
objective, users can give weightings to different combinations, i.e. through the excel file.
Another way is to filter for different material combinations after optimization. Currently,
searching for different combinations is hard, as the focus is more on the objectives. Both
ways have advantages and disadvantages. As one of the objectives, aesthetics would
guide the search during optimization. Results would have desired combinations but
may also interfere with other objectives, which may be more important. Filtering after
optimization would result in better solutions, i.e. better objective values in all other
categories, but may not include the desired combination at all.

5.3 Algorithm Comparison
The second part of the evaluation answered the second question of the thesis. First, the
search spaces of all three test cases have been evaluated to get insight of the different
properties and challenges of each test case. Test case 1 had a very large search space with
a high number of nondominated solutions. A challenge in such search spaces is to push
the search towards the Pareto front and sample the Pareto front efficiently. Test case 2
had a high number of infeasible solutions and a smaller Pareto front. One assumption
was that in a more constrained search space the algorithms would be stuck in a local
optimum and that CTAEA would do better in such situations as it was designed to tackle
this difficulties. However, the results show that this was not the case. Test case 3 has
the smallest search space and therefore, approximating the true Pareto front should be
easier compared to the other two test cases.

Throughout all test cases it has been revealed that SDE is the one algorithm that clearly
performed better than the other two algorithms. SDE always had the highest HV and
the lowest IGD+ values. In most cases it performed 100% better than the other two
algorithms in both metrics and covers around half the HV of the approximated Pareto
front. Since the performance of SDE was consistent through all test cases it can be
concluded that the search was not random and that it was guided by the evolutionary
algorithm. In test case 1 where many solutions are nondominated SDE managed to keep
a good diversity. Compared to CTAEA, SDE had a smaller solution set but around the
same number of nondominated solutions that are in the approximated Pareto front. Yet,
SDE had a much better HV and IGD+ value.

Not surprising, SPEA2 did not perform well at all. As stated in many researches SPEA2
deals well with two to three objectives, but does not handle well that many objectives.
This study confirms the problem with selection pressure using non MaOEA in a real
world problem. Through all test cases SPEA2 had the lowest HV and highest IGD+
value. From the solution set it can also be seen that even though SPEA2 has a greater
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number of solutions, most of them are dominated compared to the approximated Pareto
front, meaning that SPEA2 failed to push the search toward the Pareto front. This may
also indicate that the objectives are not strongly correlating with each other.

Surprisingly, CTAEA did not perform well. It barely did better than SPEA2. Especially
in test case 2, where large parts of the search space are infeasible it did very poorly. One
hypothesis is that since CTAEA balances both feasible and infeasible solutions there
was not enough selection pressure towards the feasible Pareto front. It was more guided
by infeasible nondominated solutions than feasible ones. The evaluated search space
by CTAEA shows that half of the generated solutions were infeasible in order to keep
the balance. However, test case 2 might not be constrained enough or disjoined enough
in order to see the advantages of CTAEA. In test case 3 CTAEA found many feasible
solutions, yet was still not as good as SDE, indicating that the selection of solutions in
general might not work well in our test cases.

The study showed that with the default parameters in the optimization tool, SDE
performs the best. Further study need to be conducted to see if SDE would outperform
the other two algorithms as well with other parameter settings, i.e. smaller or larger
population and generation size. Given the great differences between the algorithms, the
results suggest that this might be the case.
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CHAPTER 6
Conclusion and Future Work

This thesis is part of the BIMFlexi project, whose aim is to develop an integrated
BIM-based platform to connect all stakeholders in a building planning process to design
flexible and sustainable industrial buildings. In order to help stakeholders in their decision
making this thesis’ goal was to develop an optimization tool to give an overview over
trade-offs between multiple designs. The optimization tool has been evaluated in two
studies and both research questions have been answered:

1. Does an optimization tool provide a good overview of different designs and supports
users in their decision making?
The user study indicates that users found the optimization tool useful and that it
did support them in their decision making. However, at the current stage, users
would slightly prefer the manual parameter modification over the results of the
optimization.

2. Is there an algorithm that works better than other algorithms?
Comparison of the algorithms revealed that SPEA2+SDE is the one algorithm that
performed the best in our test cases with industrial buildings. Hypervolume and
Inverted Generalized Distance Plus was used to compare the algorithms. In all
three test cases SPEA2+SDE performed around 100% better than the other two
algorithms using the default settings for the optimization.

While both studies show that the optimization tool complements the parametric frame-
work, more research and developments need to be done. From the findings of the user
study, visualization of data needs improvements. A follow up study could investigate other
types of visualization, e.g. different diagrams or scales, to find out which visualization
would benefit users the most. Moreover, feedback on the optimization process itself is
missing, i.e. working with the excel file and running the optimization only with preferred
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settings, as the optimization results were only imported for the user study. Additionally,
the optimization should be run using the SPEA2+SDE algorithm to validate the results
not only from an algorithmic perspective, but also from a user perspective.

Further research needs to be done on the search space. A greater variety of test cases
is needed to investigate the behaviours of the algorithms. The algorithm study only
compared three algorithms using one parameter settings. To gain more insight a more
comprehensive study with a more diverse set of parameter settings is necessary.

One of the limiting factors was the computation time of the whole optimization process,
which is a result between the time needed for generating a structural layout and the
number of structural layouts needed for optimization. In order to reduce the whole
computational time, either the generation of structural layouts need a faster approximation
or a different optimization algorithm should be applied that needs less evaluations for
the same or better outcome.

In the next research step of the BIMFlexi project, the current framework will be coupled
to a Virtual Reality (VR) application. The results from the optimization will be loaded
into the application and users can click through different layouts, while being able to
walk inside the virtually generated buildings. It enables an immersive design space
exploration experience and will further enhance the interaction and collaboration between
stakeholders.

62



List of Figures

2.1 Dominance relation and points of interests. (a) The Pareto front consists
of the solutions A, B and C (marked in blue). D is dominated by A. E is
dominated by A, B, C and D. (b) The Pareto front is continuous (marked
with blue). The ideal, nadir and worst points are shown in relation to the
Pareto front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 nondominated sorting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 SDE for four different situations of an individual A in a minimization problem.

(a) A population with good convergence and diversity. After applying the
shift operator there is still a good convergence and diversity. (b-d) The
shift operator puts A into a crowded region when the population has a poor
convergence and/or poor diversity. [LYL13] . . . . . . . . . . . . . . . . . 12

2.4 Simple example of a Grasshopper script (right) that calculates the surface-
area-to-volume-ratio. Data flow is from left to right. Rhino (left) visualizes
the geometry that is generated through the script. . . . . . . . . . . . . . 16

2.5 Wiring of Galapagos in Grasshopper. . . . . . . . . . . . . . . . . . . . . . 17
2.6 Graphical user interface of Octopus. . . . . . . . . . . . . . . . . . . . . . 18
2.7 Graphical user interface of Opossum. . . . . . . . . . . . . . . . . . . . . . 19
2.8 Graphical user interface of Wallacei. . . . . . . . . . . . . . . . . . . . . . 20

3.1 Data flow and workflow between the three parts, production layout model,
structural layout model and the optimization tool, of the BIMFlexi framework 22

3.2 Production layout generated by the production layout generation and opti-
mization framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Parametric model. The load bearing structure is generated around one of the
possible production layouts (colored in green). . . . . . . . . . . . . . . . 26

3.4 C# optimization component. Decision variables, objectives and constraints
are linked via names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Optimization window of the tool. . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Class diagram of the optimization tool highlighting the most important parts

and associations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Activities when opening the optimization window. . . . . . . . . . . . . . 33
3.8 Activities when starting an optimization. . . . . . . . . . . . . . . . . . . 34
3.9 Activities when calculating a structural layout . . . . . . . . . . . . . . . 34

63



4.1 Evaluation of the manual (M) and automatic (A) method. From [ZRWS+22]. 39
4.2 Results for technology satisfaction of the manual (a) and automatic (b) method

separated by discipline. From [ZRWS+22]. . . . . . . . . . . . . . . . . . . 40
4.3 Results for satisfaction on people-process-level of the manual (a) and automatic

(b) method separated by discipline. From [ZRWS+22]. . . . . . . . . . . . 40
4.4 Structure type selection for manually generated layouts (a) and automati-

cally generated layouts (b). TG=Timber Girder, TF=Timber Framework,
C=Concrete T-Beam, SF=Steel Framework, SG=Steel Girder . . . . . . . 42

4.5 Production layouts for test case 1 . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Production layouts for test case 2 . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Production layouts for test case 3 . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Solution distribution of test case 1. Solutions combined from five runs. . . 47
4.9 Search space analysis of test case 1. Average number and standard deviation

from five runs for each algorithm. . . . . . . . . . . . . . . . . . . . . . . . 47
4.10 HV and IGD+ of the solution sets from test case 1 . . . . . . . . . . . . . 48
4.11 Four different structural layouts for test case 1, each focusing on different

objectives: (a) cheapest, (b) most environmentally friendly, (c) most flexible,
(d) most balanced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.12 Solution distribution of test case 2. Solutions combined from five runs. . . 50
4.13 Search space analysis of test case 2. Average number and standard deviation

from five runs for each algorithm. . . . . . . . . . . . . . . . . . . . . . . . 50
4.14 HV and IGD+ of the solution sets from test case 2 . . . . . . . . . . . . . . 51
4.15 Four different structural layouts for test case 2, each focusing on different

objectives: (a) cheapest, (b) most environmentally friendly, (c) most flexible,
(d) most balanced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.16 Solution distribution of test case 3. Solutions combined from five runs. . . 53
4.17 Search space analysis of test case 3. Average number and standard deviation

from five runs for each algorithm. . . . . . . . . . . . . . . . . . . . . . . . 53
4.18 HV and IGD+ of the solution sets from test case 3 . . . . . . . . . . . . . 54
4.19 Four different structural layouts for test case 3, each focusing on different

objectives: (a) cheapest, (b) most environmentally friendly, (c) most flexible,
(d) most balanced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.20 Average optimization time over 5 runs in hours (y-axis) for each test case and
algorithm (x-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

64



List of Tables

3.1 List of decision variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Constraints for production layout generation . . . . . . . . . . . . . . . . 24
3.3 Objectives for the optimization of production layouts . . . . . . . . . . . . 24
3.4 List of decision variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 List of constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 List of objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Final structural layout choices . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Final structural layout choices considering objective values. . . . . . . . . . 41
4.3 Number of structural layouts that had the same material for primary and

secondary structure type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Decision variables and ranges . . . . . . . . . . . . . . . . . . . . . . . . . 46

65





Bibliography

[ABC+20] Charles Audet, Jean Bigeon, Dominique Cartier, Sébastien Le Digabel, and
Ludovic Salomon. Performance indicators in multiobjective optimization.
European journal of operational research, 2020.

[Age19] International Energy Agency. Global status report for buildings and con-
struction 2019. IEA Paris, France, 2019.

[BD20] J. Blank and K. Deb. pymoo: Multi-objective optimization in python.
IEEE Access, 8:89497–89509, 2020.

[BDOOM16] Nathan Brown, JIF De Oliveira, J Ochsendorf, and Caitlin Mueller. Early-
stage integration of architectural and structural performance in a parametric
multi-objective design tool. In International conference on structures and
architecture, 2016.

[BIM20] BIM-based digital Platform for Flexible Design and Optimization of Indus-
trial Buildings for Industry 4.0. https://www.industriebau.tuwien.
ac.at/forschung/forschungsprojekte/bimflexi/, 2020. [On-
line; accessed 10-November-2021].

[BNE07] Nicola Beume, Boris Naujoks, and Michael Emmerich. Sms-emoa: Multi-
objective selection based on dominated hypervolume. European Journal of
Operational Research, 181(3):1653–1669, 2007.

[BvdBHE20] Sjonnie Boonstra, Koen van der Blom, Herm Hofmeyer, and Michael TM
Emmerich. Conceptual structural system layouts via design response gram-
mars and evolutionary algorithms. Automation in Construction, 116:103009,
2020.

[BZ11] Johannes Bader and Eckart Zitzler. Hype: An algorithm for fast
hypervolume-based many-objective optimization. Evolutionary compu-
tation, 19(1):45–76, 2011.

[CDFL19] Carmine Cavalliere, Guido Raffaele Dell’Osso, Fausto Favia, and Marco
Lovicario. Bim-based assessment metrics for the functional flexibility of
building designs. Automation in Construction, 107:102925, 2019.

67

https://www.industriebau.tuwien.ac.at/forschung/forschungsprojekte/bimflexi/
https://www.industriebau.tuwien.ac.at/forschung/forschungsprojekte/bimflexi/


[CJOS16] Ran Cheng, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. A refer-
ence vector guided evolutionary algorithm for many-objective optimization.
IEEE Transactions on Evolutionary Computation, 20(5):773–791, 2016.

[DA+95] Kalyanmoy Deb, Ram Bhushan Agrawal, et al. Simulated binary crossover
for continuous search space. Complex systems, 9(2):115–148, 1995.

[DG+96] Kalyanmoy Deb, Mayank Goyal, et al. A combined genetic adaptive
search (geneas) for engineering design. Computer Science and informatics,
26:30–45, 1996.

[DJ13] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective
optimization algorithm using reference-point-based nondominated sorting
approach, part i: solving problems with box constraints. IEEE transactions
on evolutionary computation, 18(4):577–601, 2013.

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions
on evolutionary computation, 6(2):182–197, 2002.

[foo] food4rhino. https://www.food4rhino.com/de. [Online; accessed
16-November-2021].

[Ger16] Rob Geraedts. Flex 4.0, a practical instrument to assess the adaptive
capacity of buildings. Energy Procedia, 96:568–579, 2016.

[Gra] Grasshopper3d. https://www.grasshopper3d.com/. [Online; ac-
cessed 15-November-2021].

[GWT+19] Vincent JL Gan, Chun Lok Wong, Kam Tim Tse, Jack CP Cheng, Irene MC
Lo, and Chun Man Chan. Parametric modelling and evolutionary optimiza-
tion for cost-optimal and low-carbon design of high-rise reinforced concrete
buildings. Advanced Engineering Informatics, 42:100962, 2019.

[HAPB18] Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, and David Begg.
Optimisation of structural design by integrating genetic algorithms in the
building information modelling environment. International Journal of Civil,
Environmental, Structural, Construction and Architectural Engineering,
12(9):888–893, 2018.

[HSOK07] Ken Harada, Jun Sakuma, Isao Ono, and Shigenobu Kobayashi. Constraint-
handling method for multi-objective function optimization: Pareto de-
scent repair operator. In International Conference on Evolutionary Multi-
Criterion Optimization, pages 156–170. Springer, 2007.

[Hug07] Evan J Hughes. Msops-ii: A general-purpose many-objective optimiser.
In 2007 IEEE Congress on Evolutionary Computation, pages 3944–3951.
IEEE, 2007.

68

https://www.food4rhino.com/de
https://www.grasshopper3d.com/


[IAON11] Hisao Ishibuchi, Naoya Akedo, Hiroyuki Ohyanagi, and Yusuke Nojima.
Behavior of emo algorithms on many-objective optimization problems with
correlated objectives. In 2011 IEEE Congress of Evolutionary Computation
(CEC), pages 1465–1472. IEEE, 2011.

[IMTN15] Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima.
Modified distance calculation in generational distance and inverted genera-
tional distance. In International conference on evolutionary multi-criterion
optimization, pages 110–125. Springer, 2015.

[IS19] Hisao Ishibuchi and Hiroyuki Sato. Evolutionary many-objective opti-
mization. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 614–661, 2019.

[Kno21] Maximilian Knoll. Parametric modeling of flexible structures for the
industry 4.0. Master’s thesis, TU Wien, 2021.

[KWG16] Iva Kovacic, Linus Waltenbereger, and Georgios Gourlis. Tool for life cycle
analysis of facade-systems for industrial buildings. Journal of Cleaner
Production, 130:260–272, 2016.

[LCFY18] Ke Li, Renzhi Chen, Guangtao Fu, and Xin Yao. Two-archive evolutionary
algorithm for constrained multiobjective optimization. IEEE Transactions
on Evolutionary Computation, 23(2):303–315, 2018.

[LDZK14a] Ke Li, Kalyanmoy Deb, Qingfu Zhang, and Sam Kwong. An evolutionary
many-objective optimization algorithm based on dominance and decompo-
sition. IEEE Transactions on Evolutionary Computation, 19(5):694–716,
2014.

[LDZK14b] Ke Li, Kalyanmoy Deb, Qingfu Zhang, and Sam Kwong. An evolutionary
many-objective optimization algorithm based on dominance and decom-
position. IEEE transactions on evolutionary computation, 19(5):694–716,
2014.

[LLTY14] Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. An improved two archive
algorithm for many-objective optimization. In 2014 IEEE Congress on
Evolutionary Computation (CEC), pages 2869–2876. IEEE, 2014.

[LTDZ02] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler.
Combining convergence and diversity in evolutionary multiobjective opti-
mization. Evolutionary computation, 10(3):263–282, 2002.

[LW19] Zhi-Zhong Liu and Yong Wang. Handling constrained multiobjective
optimization problems with constraints in both the decision and objective
spaces. IEEE Transactions on Evolutionary Computation, 23(5):870–884,
2019.

69



[LYL13] Miqing Li, Shengxiang Yang, and Xiaohui Liu. Shift-based density esti-
mation for pareto-based algorithms in many-objective optimization. IEEE
Transactions on Evolutionary Computation, 18(3):348–365, 2013.

[Mat] Matlab. https://www.mathworks.com. [Online; accessed 08-March-
2022].

[MN22] Mattia Manni and Andrea Nicolini. Multi-objective optimization models
to design a responsive built environment: A synthetic review. Energies,
15(2):486, 2022.

[NGY+17] Weikang Ning, Baolong Guo, Yunyi Yan, Xianxiang Wu, Jinfu Wu, and
Dan Zhao. Constrained multi-objective optimization using constrained
non-dominated sorting combined with an improved hybrid multi-objective
evolutionary algorithm. Engineering Optimization, 49(10):1645–1664, 2017.

[Opo] Opossum. https://www.food4rhino.com/en/app/
opossum-optimization-solver-surrogate-models. [Online;
accessed 23-December-2021].

[PTL+19] Wang Pan, Michela Turrin, Christian Louter, Sevil Sariyildiz, and Yimin
Sun. Integrating multi-functional space and long-span structure in the early
design stage of indoor sports arenas by using parametric modelling and
multi-objective optimization. Journal of Building Engineering, 22:464–485,
2019.

[RBF] Rbfmopt. https://github.com/bicep/RBFMopt-cli. [Online; ac-
cessed 26-December-2021].

[Rhi] Rhinoceros 3d. https://www.rhino3d.com/. [Online; accessed 15-
November-2021].

[RKK21] Julia Reisinger, Maximilian Knoll, and Iva Kovacic. Design space explo-
ration for flexibility assessment and decision making support in integrated
industrial building design. Optimization and Engineering, pages 1–33, 2021.

[RWSK+22] Julia Reisinger, Xi Wang-Sukalia, Peter Kán, Iva Kovacic, and Hannes
Kaufmann. Framework for integrated multi-objective optimization of pro-
duction and industrial building design. In Proceedings of the 2022 European
Converence on Computing in Construction, 2022.

[RZK+22] Julia Reisinger, Maria Antonia Zahlbruckner, Iva Kovacic, Peter Kán,
Xi Wang-Sukalia, and Hannes Kaufmann. Integrated multi-objective evolu-
tionary optimization of production layout scenarios for parametric structural
design of flexible industrial buildings. Journal of Building Engineering,
46:103766, 2022.

70

https://www.mathworks.com
https://www.food4rhino.com/en/app/opossum-optimization-solver-surrogate-models
https://www.food4rhino.com/en/app/opossum-optimization-solver-surrogate-models
https://github.com/bicep/RBFMopt-cli
https://www.rhino3d.com/


[SAG05] Kristina Shea, Robert Aish, and Marina Gourtovaia. Towards integrated
performance-driven generative design tools. Automation in Construction,
14(2):253–264, 2005.

[SRS10] Hemant Kumar Singh, Tapabrata Ray, and Warren Smith. C-psa: Con-
strained pareto simulated annealing for constrained multi-objective opti-
mization. Information Sciences, 180(13):2499–2513, 2010.

[TT17] Eleftheria Touloupaki and Theodoros Theodosiou. Performance simulation
integrated in parametric 3d modeling as a method for early stage design
optimization—a review. Energies, 10(5):637, 2017.

[vdBYBE19] Koen van der Blom, Kaifeng Yang, Thomas Bäck, and Michael Emmerich.
Towards multi-objective mixed integer evolution strategies. In AIP Confer-
ence Proceedings, volume 2070, page 020046. AIP Publishing LLC, 2019.

[Vie13] Robert Vierlinger. Multi objective design interface. Master’s thesis, TU
Wien, 2013.

[Wal] Wallacei. https://www.food4rhino.com/en/app/wallacei. [On-
line; accessed 23-December-2021].

[WJ07] Gaoping Wang and Huawei Jiang. Fuzzy-dominance and its application in
evolutionary many objective optimization. In 2007 International Conference
on Computational Intelligence and Security Workshops (CISW 2007), pages
195–198. IEEE, 2007.

[WM05] David H Wolpert and William G Macready. Coevolutionary free lunches.
IEEE Transactions on evolutionary computation, 9(6):721–735, 2005.

[WYT09] Yonas Gebre Woldesenbet, Gary G Yen, and Biruk G Tessema. Constraint
handling in multiobjective evolutionary optimization. IEEE Transactions
on Evolutionary Computation, 13(3):514–525, 2009.

[YTPB21] Yun Kyu Yi, Amal Tariq, Jongpil Park, and Dua Barakat. Multi-objective
optimization (moo) of a skylight roof system for structure integrity, daylight,
and material cost. Journal of Building Engineering, 34:102056, 2021.

[YXWY15] Yuan Yuan, Hua Xu, Bo Wang, and Xin Yao. A new dominance relation-
based evolutionary algorithm for many-objective optimization. IEEE Trans-
actions on Evolutionary Computation, 20(1):16–37, 2015.

[YYHW20] Xiang Yi, Xiaowei Yang, Han Huang, and Jiahai Wang. Handling con-
strained multi-objective optimization by ignoring constraints and using two
evolutionary frameworks. 2020.

[Zah21] Maria Zahlbruckner. lntegrating production layout planning into structural
design for flexible lndustrial buildings. Master’s thesis, TU Wien, 2021.

71

https://www.food4rhino.com/en/app/wallacei


[ZCLK08] Xiufen Zou, Yu Chen, Minzhong Liu, and Lishan Kang. A new evolution-
ary algorithm for solving many-objective optimization problems. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
38(5):1402–1412, 2008.

[ZK04] Eckart Zitzler and Simon Künzli. Indicator-based selection in multiobjective
search. In International conference on parallel problem solving from nature,
pages 832–842. Springer, 2004.

[ZL07] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm
based on decomposition. IEEE Transactions on evolutionary computation,
11(6):712–731, 2007.

[ZLB04] Eckart Zitzler, Marco Laumanns, and Stefan Bleuler. A tutorial on evo-
lutionary multiobjective optimization. Metaheuristics for multiobjective
optimisation, pages 3–37, 2004.

[ZLT01] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving
the strength pareto evolutionary algorithm. TIK-report, 103, 2001.

[ZRWS+22] Maria Zahlbruckner, Julia Reisinger, Xi Wang-Sukalia, Peter Kán, Maxim-
ilian Knoll, Iva Kovacic, and Hannes Kaufmann. Evaluation of parametric
multi-objective optimization and decision support tool for flexible indus-
trial building design. In Proceedings of the 2022 European Converence on
Computing in Construction, 2022.

[ZT98] Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolu-
tionary algorithms—a comparative case study. In International conference
on parallel problem solving from nature, pages 292–301. Springer, 1998.

72



Appendix A: Questionnaire

Questions from the questionnaire. The user study was done in German. A 5-point
Likert-scale was used where 5 is the most positive and 1 the most negative response. One
question (U1) is an inverted question, i.e. 5 is the most negative and 1 the most positive
response. For the graph in the results section the values of this question are inverted to
make consistent visualization.

Satisfaction with Process - Prozesszufriedenheit [SP]

• SP1 Der frühzeitige Einsatz des Tools unterstützt meine Leistung im Planungsprozess
auf zufriedenstellende Weise.

• SP2 Das Tool hilft mir bei der Herangehensweise an die Designfindung und Opti-
mierungsaufgabe.

• SP3 Das Tool unterstützt mich bei der effizienten Durchführung meiner Aufgabe
zur Designfindung in frühen Entwurfsphasen.

• SP4 Das Tool ermöglicht es mir, meine Rolle und Position bei der Gestaltung
angemessen umzusetzen (Designerpräferenzen).

Satisfaction with Outcome - Ergebniszufriedenheit [SO]

• SO1 Die gelieferten Ergebnisse des Tools als Entscheidungshilfe sind für meine
Aufgaben im Projekt und für die weitere Ausarbeitung zufriedenstellend.

• SO2 Die Ziele, die ich mir für die Designoptimierung gesetzt habe, konnten mit
dem Tool untersucht und erfüllt werden.

• SO3 Die Ergebnisse entsprechen meinen ursprünglichen Erwartungen an ein Instru-
ment zur frühen Entscheidungsfindung.

• SO4 Ich bin mit den in der Gruppe erarbeiteten und erzielten Gestaltungsergebnissen
zufrieden.
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Satisfaction with Collaboration – Kooperationszufridenheit [SC]

• SC1 Durch den Einsatz des Tools konnten die notwendigen Informationen über
die Gestaltung und die Entscheidungsfindung rechtzeitig an die Teammitglieder
weitergegeben werden.

• SC2 Alle Teammitglieder konnten dank des Tools zufriedenstellend zusammenar-
beiten.

• SC3 Das Tool unterstützte die effektive und effiziente Kommunikation zwischen
den Teammitgliedern.

• SC4 Durch den Einsatz des Tools waren die Teammitglieder in der Lage, gut
zusammenzuarbeiten und sich gegenseitig zu unterstützen.

Ease of Use – Einfachheit der Nutzung [U]

• U1 Wenn ich das Werkzeug benutzte, brauchte ich oft das Handbuch oder andere
Unterstützung.

• U2 Ich finde es einfach, das Werkzeug dazu zu bringen, das zu tun, was ich will.

• U3 Die Schnittstelle war intuitiv und selbsterklärend.

• U4 Es war einfach, zwischen verschiedenen Varianten zu wechseln.

• U5 Die Funktionalität des Tools ist leicht zu merken oder zu verstehen

• U6 Es war einfach "Variantenstudien" durchzuführen

Usefulness - Nutzerfreundlichkeit [UF]

• UF1 Ohne dieses Werkzeug wären meine Aufgaben nur schwer zu bewältigen.

• UF2 Durch den Einsatz des Tools erhöht sich meine Leistung bei der Erfüllung der
Architektur/Strukturkonzeption.

• UF3 Das Tool steigert meine Produktivität.

• UF4 Die Verwendung des Tools erhöht meine Effizienz/Zeit bei der Erledigung von
Aufgaben zur Designfindung.

• UF5 Das Tool erleichtert mir die Erfüllung meiner Aufgaben bei der frühen Entschei-
dungsfindung

• UF6 Insgesamt halte ich das Instrument als eine frühe Entscheidungshilfe für
nützlich
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Visualisation and Decision-Making - Visualisierung und Entscheidungsfindung
[VD]

• VD1 Das Instrument war bei der interdisziplinären Entscheidungsfindung hilfreich.

• VD2 Die Unterschiede der strukturellen Eigenschaften zwischen den verschiedenen
Varianten (Strukturtyp, Strukturmaterialien, Layout) waren leicht zu verstehen
und zu untersuchen.

• VD3 Ich habe die räumliche Anordnung des Gebäudes gut verstanden.

• VD4 Ich habe die Struktur des Gebäudes gut verstanden.

• VD5 Die angegebenen Parameter (Variablen) sind ausreichend und zufriedenstellend,
um vernünftige Entwurfsergebnisse zu erzielen.

• VD6 Die Visualisierung des Gebäude- und Produktionssystems unterstützte die
Entscheidungsfindung im Team.
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